Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912754435> ?p ?o ?g. }
- W2912754435 endingPage "e14197" @default.
- W2912754435 startingPage "e14197" @default.
- W2912754435 abstract "Early identification of high-risk septic patients in the emergency department (ED) may guide appropriate management and disposition, thereby improving outcomes. We compared the performance of machine learning models against conventional risk stratification tools, namely the Quick Sequential Organ Failure Assessment (qSOFA), National Early Warning Score (NEWS), Modified Early Warning Score (MEWS), and our previously described Singapore ED Sepsis (SEDS) model, in the prediction of 30-day in-hospital mortality (IHM) among suspected sepsis patients in the ED.Adult patients who presented to Singapore General Hospital (SGH) ED between September 2014 and April 2016, and who met ≥2 of the 4 Systemic Inflammatory Response Syndrome (SIRS) criteria were included. Patient demographics, vital signs and heart rate variability (HRV) measures obtained at triage were used as predictors. Baseline models were created using qSOFA, NEWS, MEWS, and SEDS scores. Candidate models were trained using k-nearest neighbors, random forest, adaptive boosting, gradient boosting and support vector machine. Models were evaluated on F1 score and area under the precision-recall curve (AUPRC).A total of 214 patients were included, of whom 40 (18.7%) met the outcome. Gradient boosting was the best model with a F1 score of 0.50 and AUPRC of 0.35, and performed better than all the baseline comparators (SEDS, F1 0.40, AUPRC 0.22; qSOFA, F1 0.32, AUPRC 0.21; NEWS, F1 0.38, AUPRC 0.28; MEWS, F1 0.30, AUPRC 0.25).A machine learning model can be used to improve prediction of 30-day IHM among suspected sepsis patients in the ED compared to traditional risk stratification tools." @default.
- W2912754435 created "2019-02-21" @default.
- W2912754435 creator A5021174816 @default.
- W2912754435 creator A5030967805 @default.
- W2912754435 creator A5036291897 @default.
- W2912754435 creator A5059452714 @default.
- W2912754435 creator A5072123793 @default.
- W2912754435 creator A5087685316 @default.
- W2912754435 date "2019-02-01" @default.
- W2912754435 modified "2023-10-06" @default.
- W2912754435 title "Heart rate variability based machine learning models for risk prediction of suspected sepsis patients in the emergency department." @default.
- W2912754435 cites W1929108078 @default.
- W2912754435 cites W1943063538 @default.
- W2912754435 cites W1966716734 @default.
- W2912754435 cites W1972200139 @default.
- W2912754435 cites W1984213393 @default.
- W2912754435 cites W2001346687 @default.
- W2912754435 cites W2003085731 @default.
- W2912754435 cites W2019952254 @default.
- W2912754435 cites W2021207844 @default.
- W2912754435 cites W2022279170 @default.
- W2912754435 cites W2023296861 @default.
- W2912754435 cites W2032144792 @default.
- W2912754435 cites W2038569109 @default.
- W2912754435 cites W2101082552 @default.
- W2912754435 cites W2150979970 @default.
- W2912754435 cites W2155659544 @default.
- W2912754435 cites W2164990391 @default.
- W2912754435 cites W2169167455 @default.
- W2912754435 cites W2170296259 @default.
- W2912754435 cites W2200122354 @default.
- W2912754435 cites W2221831393 @default.
- W2912754435 cites W2280404143 @default.
- W2912754435 cites W2372800617 @default.
- W2912754435 cites W2463614226 @default.
- W2912754435 cites W2471758426 @default.
- W2912754435 cites W2522105146 @default.
- W2912754435 cites W2581766282 @default.
- W2912754435 cites W2768083064 @default.
- W2912754435 cites W2768146862 @default.
- W2912754435 cites W2776803885 @default.
- W2912754435 cites W2806694277 @default.
- W2912754435 cites W3016555942 @default.
- W2912754435 doi "https://doi.org/10.1097/md.0000000000014197" @default.
- W2912754435 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6380871" @default.
- W2912754435 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30732136" @default.
- W2912754435 hasPublicationYear "2019" @default.
- W2912754435 type Work @default.
- W2912754435 sameAs 2912754435 @default.
- W2912754435 citedByCount "59" @default.
- W2912754435 countsByYear W29127544352019 @default.
- W2912754435 countsByYear W29127544352020 @default.
- W2912754435 countsByYear W29127544352021 @default.
- W2912754435 countsByYear W29127544352022 @default.
- W2912754435 countsByYear W29127544352023 @default.
- W2912754435 crossrefType "journal-article" @default.
- W2912754435 hasAuthorship W2912754435A5021174816 @default.
- W2912754435 hasAuthorship W2912754435A5030967805 @default.
- W2912754435 hasAuthorship W2912754435A5036291897 @default.
- W2912754435 hasAuthorship W2912754435A5059452714 @default.
- W2912754435 hasAuthorship W2912754435A5072123793 @default.
- W2912754435 hasAuthorship W2912754435A5087685316 @default.
- W2912754435 hasBestOaLocation W29127544351 @default.
- W2912754435 hasConcept C11783203 @default.
- W2912754435 hasConcept C118552586 @default.
- W2912754435 hasConcept C119857082 @default.
- W2912754435 hasConcept C126322002 @default.
- W2912754435 hasConcept C141071460 @default.
- W2912754435 hasConcept C151956035 @default.
- W2912754435 hasConcept C154945302 @default.
- W2912754435 hasConcept C169258074 @default.
- W2912754435 hasConcept C194828623 @default.
- W2912754435 hasConcept C2776890885 @default.
- W2912754435 hasConcept C2777120189 @default.
- W2912754435 hasConcept C2777671062 @default.
- W2912754435 hasConcept C2778358025 @default.
- W2912754435 hasConcept C2778384902 @default.
- W2912754435 hasConcept C2779134260 @default.
- W2912754435 hasConcept C2780724011 @default.
- W2912754435 hasConcept C2781090800 @default.
- W2912754435 hasConcept C41008148 @default.
- W2912754435 hasConcept C58471807 @default.
- W2912754435 hasConcept C70153297 @default.
- W2912754435 hasConcept C71924100 @default.
- W2912754435 hasConceptScore W2912754435C11783203 @default.
- W2912754435 hasConceptScore W2912754435C118552586 @default.
- W2912754435 hasConceptScore W2912754435C119857082 @default.
- W2912754435 hasConceptScore W2912754435C126322002 @default.
- W2912754435 hasConceptScore W2912754435C141071460 @default.
- W2912754435 hasConceptScore W2912754435C151956035 @default.
- W2912754435 hasConceptScore W2912754435C154945302 @default.
- W2912754435 hasConceptScore W2912754435C169258074 @default.
- W2912754435 hasConceptScore W2912754435C194828623 @default.
- W2912754435 hasConceptScore W2912754435C2776890885 @default.
- W2912754435 hasConceptScore W2912754435C2777120189 @default.
- W2912754435 hasConceptScore W2912754435C2777671062 @default.
- W2912754435 hasConceptScore W2912754435C2778358025 @default.
- W2912754435 hasConceptScore W2912754435C2778384902 @default.