Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912755644> ?p ?o ?g. }
- W2912755644 endingPage "32782" @default.
- W2912755644 startingPage "32765" @default.
- W2912755644 abstract "Attackers usually use a command and control (C2) server to manipulate the communication. In order to perform an attack, threat actors often employ a domain generation algorithm (DGA), which can allow malware to communicate with C2 by generating a variety of network locations. Traditional malware control methods, such as blacklisting, are insufficient to handle DGA threats. In this paper, we propose a machine learning framework for identifying and detecting DGA domains to alleviate the threat. We collect real-time threat data from the real-life traffic over a one-year period. We also propose a deep learning model to classify a large number of DGA domains. The proposed machine learning framework consists of a two-level model and a prediction model. In the two-level model, we first classify the DGA domains apart from normal domains and then use the clustering method to identify the algorithms that generate those DGA domains. In the prediction model, a time-series model is constructed to predict incoming domain features based on the hidden Markov model (HMM). Furthermore, we build a deep neural network (DNN) model to enhance the proposed machine learning framework by handling the huge dataset we gradually collected. Our extensive experimental results demonstrate the accuracy of the proposed framework and the DNN model. To be precise, we achieve an accuracy of 95.89% for the classification in the framework and 97.79% in the DNN model, 92.45% for the second-level clustering, and 95.21% for the HMM prediction in the framework." @default.
- W2912755644 created "2019-02-21" @default.
- W2912755644 creator A5001137299 @default.
- W2912755644 creator A5010095679 @default.
- W2912755644 creator A5042668908 @default.
- W2912755644 creator A5064842058 @default.
- W2912755644 date "2019-01-01" @default.
- W2912755644 modified "2023-10-14" @default.
- W2912755644 title "A Machine Learning Framework for Domain Generation Algorithm-Based Malware Detection" @default.
- W2912755644 cites W114517082 @default.
- W2912755644 cites W1481152834 @default.
- W2912755644 cites W1508225132 @default.
- W2912755644 cites W1581009051 @default.
- W2912755644 cites W1966580635 @default.
- W2912755644 cites W1972041827 @default.
- W2912755644 cites W1981294881 @default.
- W2912755644 cites W1984020445 @default.
- W2912755644 cites W1987684126 @default.
- W2912755644 cites W2007343513 @default.
- W2912755644 cites W2016306175 @default.
- W2912755644 cites W2035593393 @default.
- W2912755644 cites W2035700414 @default.
- W2912755644 cites W2039427951 @default.
- W2912755644 cites W2055234825 @default.
- W2912755644 cites W2068849277 @default.
- W2912755644 cites W2076063813 @default.
- W2912755644 cites W2078965963 @default.
- W2912755644 cites W2095880437 @default.
- W2912755644 cites W2100307718 @default.
- W2912755644 cites W2127540081 @default.
- W2912755644 cites W2138893874 @default.
- W2912755644 cites W2146729596 @default.
- W2912755644 cites W2147768505 @default.
- W2912755644 cites W2153122359 @default.
- W2912755644 cites W2170508015 @default.
- W2912755644 cites W2194775991 @default.
- W2912755644 cites W2221972625 @default.
- W2912755644 cites W22566950 @default.
- W2912755644 cites W2406349003 @default.
- W2912755644 cites W2464408822 @default.
- W2912755644 cites W2487301225 @default.
- W2912755644 cites W2489447285 @default.
- W2912755644 cites W2564186131 @default.
- W2912755644 cites W2617931713 @default.
- W2912755644 cites W2740924709 @default.
- W2912755644 cites W2744241569 @default.
- W2912755644 cites W2756193836 @default.
- W2912755644 cites W2762467223 @default.
- W2912755644 cites W2773671123 @default.
- W2912755644 cites W2783628527 @default.
- W2912755644 cites W2907290714 @default.
- W2912755644 cites W2964248614 @default.
- W2912755644 doi "https://doi.org/10.1109/access.2019.2891588" @default.
- W2912755644 hasPublicationYear "2019" @default.
- W2912755644 type Work @default.
- W2912755644 sameAs 2912755644 @default.
- W2912755644 citedByCount "45" @default.
- W2912755644 countsByYear W29127556442019 @default.
- W2912755644 countsByYear W29127556442020 @default.
- W2912755644 countsByYear W29127556442021 @default.
- W2912755644 countsByYear W29127556442022 @default.
- W2912755644 countsByYear W29127556442023 @default.
- W2912755644 crossrefType "journal-article" @default.
- W2912755644 hasAuthorship W2912755644A5001137299 @default.
- W2912755644 hasAuthorship W2912755644A5010095679 @default.
- W2912755644 hasAuthorship W2912755644A5042668908 @default.
- W2912755644 hasAuthorship W2912755644A5064842058 @default.
- W2912755644 hasBestOaLocation W29127556441 @default.
- W2912755644 hasConcept C111919701 @default.
- W2912755644 hasConcept C11413529 @default.
- W2912755644 hasConcept C119857082 @default.
- W2912755644 hasConcept C134306372 @default.
- W2912755644 hasConcept C154945302 @default.
- W2912755644 hasConcept C33923547 @default.
- W2912755644 hasConcept C36503486 @default.
- W2912755644 hasConcept C41008148 @default.
- W2912755644 hasConcept C541664917 @default.
- W2912755644 hasConcept C80444323 @default.
- W2912755644 hasConceptScore W2912755644C111919701 @default.
- W2912755644 hasConceptScore W2912755644C11413529 @default.
- W2912755644 hasConceptScore W2912755644C119857082 @default.
- W2912755644 hasConceptScore W2912755644C134306372 @default.
- W2912755644 hasConceptScore W2912755644C154945302 @default.
- W2912755644 hasConceptScore W2912755644C33923547 @default.
- W2912755644 hasConceptScore W2912755644C36503486 @default.
- W2912755644 hasConceptScore W2912755644C41008148 @default.
- W2912755644 hasConceptScore W2912755644C541664917 @default.
- W2912755644 hasConceptScore W2912755644C80444323 @default.
- W2912755644 hasFunder F4320306076 @default.
- W2912755644 hasFunder F4320310847 @default.
- W2912755644 hasLocation W29127556441 @default.
- W2912755644 hasLocation W29127556442 @default.
- W2912755644 hasOpenAccess W2912755644 @default.
- W2912755644 hasPrimaryLocation W29127556441 @default.
- W2912755644 hasRelatedWork W1827256152 @default.
- W2912755644 hasRelatedWork W2738219410 @default.
- W2912755644 hasRelatedWork W2961085424 @default.
- W2912755644 hasRelatedWork W2968586400 @default.