Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912758732> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2912758732 abstract "When a patient takes two or more drugs within a certain time, the efficacy of one drug may be influenced by the other. This phenomenon is called drug-drug interactions (DDIs). DDIs are important and helpful information for both medical staff and patients to make sure that the drugs co-administrated at the same time have a positive effect on therapy of patients. Many approaches have been applied into drug-drug interaction extraction tasks such as support vector machine (SVM), recurrent neural network (RNN) and long short-term memory (LSTM) in particular. However, the structures of these models are relatively shallow for DDI extraction research compared with the deep neural networks employed in the field of computer vision. However much better results can be obtained with a deep problem-specific architecture which develops hierarchical representations. Hierarchical and deep neural networks may improve DDI extraction. To address this problem, we present a hierarchical and deep neural network to enrich the feature extraction process to enhance the performance of DDI extraction. In this article, we present a deep convolutional neural network (DCNN) based on DDI extraction method. In this method, we firstly apply embedding mechanism to get the semantic and syntactic of the original biomedical literature. Then a novel architecture using small convolutions is proposed, which takes raw biomedical literature as input and operates directly at the word level to get the embedding-based convolutional features. Finally, these features are fed to softmax classifier to extract DDIs from biomedical literature. Our experimental results on the DDIExtraction 2013 corpus show that the performance of network increases as the network gets deeper and hits its peak at depth 16, which obtains a better result (an F1 score $mathrm {o}mathrm {f}0.845$) than other state-of-the-art methods." @default.
- W2912758732 created "2019-02-21" @default.
- W2912758732 creator A5013219972 @default.
- W2912758732 creator A5017328996 @default.
- W2912758732 creator A5036424548 @default.
- W2912758732 creator A5037149834 @default.
- W2912758732 creator A5071285943 @default.
- W2912758732 date "2018-12-01" @default.
- W2912758732 modified "2023-09-30" @default.
- W2912758732 title "Deep Convolution Neural Networks for Drug-Drug Interaction Extraction" @default.
- W2912758732 cites W1983053593 @default.
- W2912758732 cites W2018518196 @default.
- W2912758732 cites W2047731840 @default.
- W2912758732 cites W2067704478 @default.
- W2912758732 cites W2086169342 @default.
- W2912758732 cites W2120615054 @default.
- W2912758732 cites W2170189740 @default.
- W2912758732 cites W2264517602 @default.
- W2912758732 cites W2485374661 @default.
- W2912758732 cites W2619099103 @default.
- W2912758732 cites W2964046515 @default.
- W2912758732 doi "https://doi.org/10.1109/bibm.2018.8621405" @default.
- W2912758732 hasPublicationYear "2018" @default.
- W2912758732 type Work @default.
- W2912758732 sameAs 2912758732 @default.
- W2912758732 citedByCount "19" @default.
- W2912758732 countsByYear W29127587322019 @default.
- W2912758732 countsByYear W29127587322020 @default.
- W2912758732 countsByYear W29127587322021 @default.
- W2912758732 countsByYear W29127587322022 @default.
- W2912758732 countsByYear W29127587322023 @default.
- W2912758732 crossrefType "proceedings-article" @default.
- W2912758732 hasAuthorship W2912758732A5013219972 @default.
- W2912758732 hasAuthorship W2912758732A5017328996 @default.
- W2912758732 hasAuthorship W2912758732A5036424548 @default.
- W2912758732 hasAuthorship W2912758732A5037149834 @default.
- W2912758732 hasAuthorship W2912758732A5071285943 @default.
- W2912758732 hasConcept C108583219 @default.
- W2912758732 hasConcept C119857082 @default.
- W2912758732 hasConcept C12267149 @default.
- W2912758732 hasConcept C153180895 @default.
- W2912758732 hasConcept C154945302 @default.
- W2912758732 hasConcept C188441871 @default.
- W2912758732 hasConcept C2776461190 @default.
- W2912758732 hasConcept C2777462759 @default.
- W2912758732 hasConcept C41008148 @default.
- W2912758732 hasConcept C41608201 @default.
- W2912758732 hasConcept C45347329 @default.
- W2912758732 hasConcept C50644808 @default.
- W2912758732 hasConcept C52622490 @default.
- W2912758732 hasConcept C81363708 @default.
- W2912758732 hasConcept C95623464 @default.
- W2912758732 hasConceptScore W2912758732C108583219 @default.
- W2912758732 hasConceptScore W2912758732C119857082 @default.
- W2912758732 hasConceptScore W2912758732C12267149 @default.
- W2912758732 hasConceptScore W2912758732C153180895 @default.
- W2912758732 hasConceptScore W2912758732C154945302 @default.
- W2912758732 hasConceptScore W2912758732C188441871 @default.
- W2912758732 hasConceptScore W2912758732C2776461190 @default.
- W2912758732 hasConceptScore W2912758732C2777462759 @default.
- W2912758732 hasConceptScore W2912758732C41008148 @default.
- W2912758732 hasConceptScore W2912758732C41608201 @default.
- W2912758732 hasConceptScore W2912758732C45347329 @default.
- W2912758732 hasConceptScore W2912758732C50644808 @default.
- W2912758732 hasConceptScore W2912758732C52622490 @default.
- W2912758732 hasConceptScore W2912758732C81363708 @default.
- W2912758732 hasConceptScore W2912758732C95623464 @default.
- W2912758732 hasLocation W29127587321 @default.
- W2912758732 hasOpenAccess W2912758732 @default.
- W2912758732 hasPrimaryLocation W29127587321 @default.
- W2912758732 hasRelatedWork W1728708896 @default.
- W2912758732 hasRelatedWork W1866290825 @default.
- W2912758732 hasRelatedWork W2130200978 @default.
- W2912758732 hasRelatedWork W2549665044 @default.
- W2912758732 hasRelatedWork W2785490962 @default.
- W2912758732 hasRelatedWork W2905052559 @default.
- W2912758732 hasRelatedWork W2947975382 @default.
- W2912758732 hasRelatedWork W3026025619 @default.
- W2912758732 hasRelatedWork W3044699854 @default.
- W2912758732 hasRelatedWork W4214895820 @default.
- W2912758732 isParatext "false" @default.
- W2912758732 isRetracted "false" @default.
- W2912758732 magId "2912758732" @default.
- W2912758732 workType "article" @default.