Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912771588> ?p ?o ?g. }
- W2912771588 abstract "Current deep domain adaptation methods used in computer vision have mainly focused on learning discriminative and domain-invariant features across different domains. In this paper, we present a novel approach that bridges the domain gap by projecting the source and target domains into a common association space through an unsupervised ``cross-grafted representation stacking'' (CGRS) mechanism. Specifically, we construct variational auto-encoders (VAE) for the two domains, and form bidirectional associations by cross-grafting the VAEs' decoder stacks. Furthermore, generative adversarial networks (GAN) are employed for label alignment (LA), mapping the target domain data to the known label space of the source domain. The overall adaptation process hence consists of three phases: feature representation learning by VAEs, association generation, and association label alignment by GANs. Experimental results demonstrate that our CGRS-LA approach outperforms the state-of-the-art on a number of unsupervised domain adaptation benchmarks." @default.
- W2912771588 created "2019-02-21" @default.
- W2912771588 creator A5030040261 @default.
- W2912771588 creator A5056969005 @default.
- W2912771588 creator A5077547406 @default.
- W2912771588 creator A5085003385 @default.
- W2912771588 date "2019-02-17" @default.
- W2912771588 modified "2023-10-12" @default.
- W2912771588 title "Unsupervised Domain Adaptation using Deep Networks with Cross-Grafted Stacks" @default.
- W2912771588 cites W1565327149 @default.
- W2912771588 cites W2057266281 @default.
- W2912771588 cites W2085269372 @default.
- W2912771588 cites W2099471712 @default.
- W2912771588 cites W2104094955 @default.
- W2912771588 cites W2112796928 @default.
- W2912771588 cites W2126883639 @default.
- W2912771588 cites W2128053425 @default.
- W2912771588 cites W2141504882 @default.
- W2912771588 cites W2163922914 @default.
- W2912771588 cites W2165698076 @default.
- W2912771588 cites W2187089797 @default.
- W2912771588 cites W2196283579 @default.
- W2912771588 cites W2214409633 @default.
- W2912771588 cites W2271840356 @default.
- W2912771588 cites W2279034837 @default.
- W2912771588 cites W2293078015 @default.
- W2912771588 cites W2312004824 @default.
- W2912771588 cites W2478454054 @default.
- W2912771588 cites W2511131004 @default.
- W2912771588 cites W2551835155 @default.
- W2912771588 cites W2558385255 @default.
- W2912771588 cites W2584009249 @default.
- W2912771588 cites W2593768305 @default.
- W2912771588 cites W2605488490 @default.
- W2912771588 cites W2611199090 @default.
- W2912771588 cites W2627183927 @default.
- W2912771588 cites W2750384547 @default.
- W2912771588 cites W2755962456 @default.
- W2912771588 cites W2795155917 @default.
- W2912771588 cites W2949667497 @default.
- W2912771588 cites W2951004968 @default.
- W2912771588 cites W2951670162 @default.
- W2912771588 cites W2962808524 @default.
- W2912771588 cites W2963275094 @default.
- W2912771588 cites W2963784072 @default.
- W2912771588 cites W2964121744 @default.
- W2912771588 cites W2186639548 @default.
- W2912771588 doi "https://doi.org/10.48550/arxiv.1902.06328" @default.
- W2912771588 hasPublicationYear "2019" @default.
- W2912771588 type Work @default.
- W2912771588 sameAs 2912771588 @default.
- W2912771588 citedByCount "0" @default.
- W2912771588 crossrefType "posted-content" @default.
- W2912771588 hasAuthorship W2912771588A5030040261 @default.
- W2912771588 hasAuthorship W2912771588A5056969005 @default.
- W2912771588 hasAuthorship W2912771588A5077547406 @default.
- W2912771588 hasAuthorship W2912771588A5085003385 @default.
- W2912771588 hasBestOaLocation W29127715881 @default.
- W2912771588 hasConcept C101738243 @default.
- W2912771588 hasConcept C108583219 @default.
- W2912771588 hasConcept C111472728 @default.
- W2912771588 hasConcept C111919701 @default.
- W2912771588 hasConcept C118505674 @default.
- W2912771588 hasConcept C119857082 @default.
- W2912771588 hasConcept C134306372 @default.
- W2912771588 hasConcept C138885662 @default.
- W2912771588 hasConcept C142853389 @default.
- W2912771588 hasConcept C153180895 @default.
- W2912771588 hasConcept C154945302 @default.
- W2912771588 hasConcept C17744445 @default.
- W2912771588 hasConcept C199539241 @default.
- W2912771588 hasConcept C2776359362 @default.
- W2912771588 hasConcept C2776434776 @default.
- W2912771588 hasConcept C33923547 @default.
- W2912771588 hasConcept C36503486 @default.
- W2912771588 hasConcept C41008148 @default.
- W2912771588 hasConcept C59404180 @default.
- W2912771588 hasConcept C8038995 @default.
- W2912771588 hasConcept C94625758 @default.
- W2912771588 hasConcept C95623464 @default.
- W2912771588 hasConcept C97931131 @default.
- W2912771588 hasConceptScore W2912771588C101738243 @default.
- W2912771588 hasConceptScore W2912771588C108583219 @default.
- W2912771588 hasConceptScore W2912771588C111472728 @default.
- W2912771588 hasConceptScore W2912771588C111919701 @default.
- W2912771588 hasConceptScore W2912771588C118505674 @default.
- W2912771588 hasConceptScore W2912771588C119857082 @default.
- W2912771588 hasConceptScore W2912771588C134306372 @default.
- W2912771588 hasConceptScore W2912771588C138885662 @default.
- W2912771588 hasConceptScore W2912771588C142853389 @default.
- W2912771588 hasConceptScore W2912771588C153180895 @default.
- W2912771588 hasConceptScore W2912771588C154945302 @default.
- W2912771588 hasConceptScore W2912771588C17744445 @default.
- W2912771588 hasConceptScore W2912771588C199539241 @default.
- W2912771588 hasConceptScore W2912771588C2776359362 @default.
- W2912771588 hasConceptScore W2912771588C2776434776 @default.
- W2912771588 hasConceptScore W2912771588C33923547 @default.
- W2912771588 hasConceptScore W2912771588C36503486 @default.
- W2912771588 hasConceptScore W2912771588C41008148 @default.
- W2912771588 hasConceptScore W2912771588C59404180 @default.