Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912771644> ?p ?o ?g. }
- W2912771644 abstract "Sentiment Analysis can help to extract knowledge related to opinions and emotions from user generated text information. It can be applied in medical field for patients monitoring purposes. With the availability of large datasets, deep learning algorithms have become a state of the art also for sentiment analysis. However, deep models have the drawback of not being non human-interpretable, raising various problems related to model's interpretability. Very few work have been proposed to build models that explain their decision making process and actions. In this work, we review the current sentiment analysis approaches and existing explainable systems. Moreover, we present a critical review of explainable sentiment analysis models and discussed the insight of applying explainable sentiment analysis in the medical field." @default.
- W2912771644 created "2019-02-21" @default.
- W2912771644 creator A5004845138 @default.
- W2912771644 creator A5007549483 @default.
- W2912771644 creator A5046581302 @default.
- W2912771644 creator A5075528828 @default.
- W2912771644 date "2018-12-01" @default.
- W2912771644 modified "2023-09-25" @default.
- W2912771644 title "Explainable Sentiment Analysis with Applications in Medicine" @default.
- W2912771644 cites W1537829113 @default.
- W2912771644 cites W1546447215 @default.
- W2912771644 cites W177032395 @default.
- W2912771644 cites W1787224781 @default.
- W2912771644 cites W1832693441 @default.
- W2912771644 cites W1947481528 @default.
- W2912771644 cites W1965925596 @default.
- W2912771644 cites W1996796871 @default.
- W2912771644 cites W2019759670 @default.
- W2912771644 cites W2021137987 @default.
- W2912771644 cites W2085635579 @default.
- W2912771644 cites W2118022153 @default.
- W2912771644 cites W2118778378 @default.
- W2912771644 cites W2129587854 @default.
- W2912771644 cites W2141161236 @default.
- W2912771644 cites W2152184085 @default.
- W2912771644 cites W2166706824 @default.
- W2912771644 cites W2215376118 @default.
- W2912771644 cites W2240067561 @default.
- W2912771644 cites W2250879510 @default.
- W2912771644 cites W2282821441 @default.
- W2912771644 cites W2296167504 @default.
- W2912771644 cites W2367397349 @default.
- W2912771644 cites W2406624406 @default.
- W2912771644 cites W2520748998 @default.
- W2912771644 cites W2584281025 @default.
- W2912771644 cites W2594336441 @default.
- W2912771644 cites W2596799992 @default.
- W2912771644 cites W2605108175 @default.
- W2912771644 cites W2618221201 @default.
- W2912771644 cites W2618843390 @default.
- W2912771644 cites W2624211799 @default.
- W2912771644 cites W2657631929 @default.
- W2912771644 cites W2760392765 @default.
- W2912771644 cites W2771498260 @default.
- W2912771644 cites W2786411768 @default.
- W2912771644 cites W2788347302 @default.
- W2912771644 cites W2919115771 @default.
- W2912771644 cites W2962772482 @default.
- W2912771644 cites W2962853356 @default.
- W2912771644 cites W2963199188 @default.
- W2912771644 cites W2963233086 @default.
- W2912771644 cites W2963355447 @default.
- W2912771644 cites W2964045325 @default.
- W2912771644 cites W2964236337 @default.
- W2912771644 doi "https://doi.org/10.1109/bibm.2018.8621359" @default.
- W2912771644 hasPublicationYear "2018" @default.
- W2912771644 type Work @default.
- W2912771644 sameAs 2912771644 @default.
- W2912771644 citedByCount "23" @default.
- W2912771644 countsByYear W29127716442019 @default.
- W2912771644 countsByYear W29127716442020 @default.
- W2912771644 countsByYear W29127716442021 @default.
- W2912771644 countsByYear W29127716442022 @default.
- W2912771644 countsByYear W29127716442023 @default.
- W2912771644 crossrefType "proceedings-article" @default.
- W2912771644 hasAuthorship W2912771644A5004845138 @default.
- W2912771644 hasAuthorship W2912771644A5007549483 @default.
- W2912771644 hasAuthorship W2912771644A5046581302 @default.
- W2912771644 hasAuthorship W2912771644A5075528828 @default.
- W2912771644 hasConcept C108583219 @default.
- W2912771644 hasConcept C111919701 @default.
- W2912771644 hasConcept C119857082 @default.
- W2912771644 hasConcept C127413603 @default.
- W2912771644 hasConcept C154945302 @default.
- W2912771644 hasConcept C202444582 @default.
- W2912771644 hasConcept C2522767166 @default.
- W2912771644 hasConcept C2780589192 @default.
- W2912771644 hasConcept C2781067378 @default.
- W2912771644 hasConcept C33923547 @default.
- W2912771644 hasConcept C41008148 @default.
- W2912771644 hasConcept C66402592 @default.
- W2912771644 hasConcept C78519656 @default.
- W2912771644 hasConcept C9652623 @default.
- W2912771644 hasConcept C98045186 @default.
- W2912771644 hasConceptScore W2912771644C108583219 @default.
- W2912771644 hasConceptScore W2912771644C111919701 @default.
- W2912771644 hasConceptScore W2912771644C119857082 @default.
- W2912771644 hasConceptScore W2912771644C127413603 @default.
- W2912771644 hasConceptScore W2912771644C154945302 @default.
- W2912771644 hasConceptScore W2912771644C202444582 @default.
- W2912771644 hasConceptScore W2912771644C2522767166 @default.
- W2912771644 hasConceptScore W2912771644C2780589192 @default.
- W2912771644 hasConceptScore W2912771644C2781067378 @default.
- W2912771644 hasConceptScore W2912771644C33923547 @default.
- W2912771644 hasConceptScore W2912771644C41008148 @default.
- W2912771644 hasConceptScore W2912771644C66402592 @default.
- W2912771644 hasConceptScore W2912771644C78519656 @default.
- W2912771644 hasConceptScore W2912771644C9652623 @default.
- W2912771644 hasConceptScore W2912771644C98045186 @default.
- W2912771644 hasLocation W29127716441 @default.