Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912772276> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2912772276 abstract "Pedicle screw fixation is a common yet technically demanding procedure. Due to the proximity of the inserted implant to the spinal column, a malplaced screw can cause neurological injury and subsequent postoperative complications. A common surgical routine starts with preoperative volumetric image acquisition (e.g. computed tomography) based on which the surgeons can highlight the planned trajectory. This process is generally done manually , which is error prone and time consuming. The primary purpose of this paper is to develop an automatic pedicle region localization based on preoperative CTs. This system can automatically annotate the CT scans to identify the regions corresponding to the pedicles and thus provide important information about the anatomical placement of the CT scan that can be useful for intraoperative implant position assessment (e.g. to initialize the 2D-3D registration). On the other hand, the pedicle localization can be exploited for preoperative planning. We designed and evaluated a fully convolutional neural network for the task of pedicle localization. A large training, validation and testing datasets (5000, 1000, 1000 images separately) were created using a custom data augmentation process that could generate unique vertebral morphologies for each image. After evaluation on the validation and test data, the Dice similarity coefficients between the pedicle regions detected by the trained network and the ground truth was 0.85 and 0.83 respectively. The proposed deep-learning-based algorithm was capable of automatically localizing the regions corresponding to the pedicles based on the preoperative CT scans. Therefore, a reliable initial guess for the 2D-3D registration process needed for intraoperative implant position assessment can be achieved. This system also has potential use in automating the preoperative planning." @default.
- W2912772276 created "2019-02-21" @default.
- W2912772276 creator A5030612570 @default.
- W2912772276 creator A5042562655 @default.
- W2912772276 creator A5064553117 @default.
- W2912772276 creator A5090323847 @default.
- W2912772276 date "2018-07-12" @default.
- W2912772276 modified "2023-09-27" @default.
- W2912772276 title "A deep learning-based approach for localization of pedicle regions in preoperative CT scans" @default.
- W2912772276 cites W1903029394 @default.
- W2912772276 cites W1985500397 @default.
- W2912772276 cites W2035437861 @default.
- W2912772276 cites W2045370430 @default.
- W2912772276 cites W2154185781 @default.
- W2912772276 cites W2315215287 @default.
- W2912772276 cites W2358693203 @default.
- W2912772276 cites W2536366654 @default.
- W2912772276 doi "https://doi.org/10.29007/j56f" @default.
- W2912772276 hasPublicationYear "2018" @default.
- W2912772276 type Work @default.
- W2912772276 sameAs 2912772276 @default.
- W2912772276 citedByCount "0" @default.
- W2912772276 crossrefType "proceedings-article" @default.
- W2912772276 hasAuthorship W2912772276A5030612570 @default.
- W2912772276 hasAuthorship W2912772276A5042562655 @default.
- W2912772276 hasAuthorship W2912772276A5064553117 @default.
- W2912772276 hasAuthorship W2912772276A5090323847 @default.
- W2912772276 hasBestOaLocation W29127722761 @default.
- W2912772276 hasConcept C108583219 @default.
- W2912772276 hasConcept C111919701 @default.
- W2912772276 hasConcept C126838900 @default.
- W2912772276 hasConcept C146249460 @default.
- W2912772276 hasConcept C146849305 @default.
- W2912772276 hasConcept C154945302 @default.
- W2912772276 hasConcept C2779370443 @default.
- W2912772276 hasConcept C2908647359 @default.
- W2912772276 hasConcept C31972630 @default.
- W2912772276 hasConcept C41008148 @default.
- W2912772276 hasConcept C544519230 @default.
- W2912772276 hasConcept C71924100 @default.
- W2912772276 hasConcept C81363708 @default.
- W2912772276 hasConcept C98045186 @default.
- W2912772276 hasConcept C99454951 @default.
- W2912772276 hasConceptScore W2912772276C108583219 @default.
- W2912772276 hasConceptScore W2912772276C111919701 @default.
- W2912772276 hasConceptScore W2912772276C126838900 @default.
- W2912772276 hasConceptScore W2912772276C146249460 @default.
- W2912772276 hasConceptScore W2912772276C146849305 @default.
- W2912772276 hasConceptScore W2912772276C154945302 @default.
- W2912772276 hasConceptScore W2912772276C2779370443 @default.
- W2912772276 hasConceptScore W2912772276C2908647359 @default.
- W2912772276 hasConceptScore W2912772276C31972630 @default.
- W2912772276 hasConceptScore W2912772276C41008148 @default.
- W2912772276 hasConceptScore W2912772276C544519230 @default.
- W2912772276 hasConceptScore W2912772276C71924100 @default.
- W2912772276 hasConceptScore W2912772276C81363708 @default.
- W2912772276 hasConceptScore W2912772276C98045186 @default.
- W2912772276 hasConceptScore W2912772276C99454951 @default.
- W2912772276 hasLocation W29127722761 @default.
- W2912772276 hasOpenAccess W2912772276 @default.
- W2912772276 hasPrimaryLocation W29127722761 @default.
- W2912772276 hasRelatedWork W2731899572 @default.
- W2912772276 hasRelatedWork W2751100193 @default.
- W2912772276 hasRelatedWork W2774444957 @default.
- W2912772276 hasRelatedWork W2914010220 @default.
- W2912772276 hasRelatedWork W3116150086 @default.
- W2912772276 hasRelatedWork W3128305826 @default.
- W2912772276 hasRelatedWork W3133861977 @default.
- W2912772276 hasRelatedWork W4200173597 @default.
- W2912772276 hasRelatedWork W4312417841 @default.
- W2912772276 hasRelatedWork W4321369474 @default.
- W2912772276 isParatext "false" @default.
- W2912772276 isRetracted "false" @default.
- W2912772276 magId "2912772276" @default.
- W2912772276 workType "article" @default.