Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912773127> ?p ?o ?g. }
- W2912773127 endingPage "508" @default.
- W2912773127 startingPage "492" @default.
- W2912773127 abstract "The increasing volume of firm-related conversations on social media has made it considerably more difficult for marketers to track and analyse electronic word-of-mouth (eWOM) about brands, products or services. Firms often use sentiment analysis to identify relevant eWOM that requires a response to consequently engage in webcare. In this paper, we show that sentiment analysis of any kind might not be ideal for this purpose, because it relies on the questionable assumption that only negative eWOM is response-worthy and it is not able to infer meaning from text. We propose and test an approach based on supervised machine learning that first decides whether eWOM is relevant for the brand to respond, and then—based on a categorization of seven different types of eWOM (e.g., question, complaint)—classifies three customer satisfaction dimensions. Using a dataset of approximately 60,000 Facebook comments and 11,000 tweets about 16 different brands in eight different industries, we test and compare the efficacy of various sentiment analysis, dictionary-based and machine learning techniques to detect relevant eWOM. In doing so, this study identifies response-worthy eWOM based on the content instead of its expressed sentiment. The results indicate that these machine learning techniques achieve considerably higher accuracy in detecting relevant eWOM on social media compared to any kind of sentiment analysis. Moreover, it is shown that industry-specific classifiers can further improve this process and that algorithms are applicable across different social networks." @default.
- W2912773127 created "2019-02-21" @default.
- W2912773127 creator A5002514740 @default.
- W2912773127 creator A5044033735 @default.
- W2912773127 creator A5067027289 @default.
- W2912773127 creator A5070414079 @default.
- W2912773127 date "2019-09-01" @default.
- W2912773127 modified "2023-10-18" @default.
- W2912773127 title "Seeing the wood for the trees: How machine learning can help firms in identifying relevant electronic word-of-mouth in social media" @default.
- W2912773127 cites W1537204219 @default.
- W2912773127 cites W1817345162 @default.
- W2912773127 cites W1966651033 @default.
- W2912773127 cites W1971796831 @default.
- W2912773127 cites W2007734915 @default.
- W2912773127 cites W2010844754 @default.
- W2912773127 cites W2018105737 @default.
- W2912773127 cites W2040246260 @default.
- W2912773127 cites W2040677280 @default.
- W2912773127 cites W2049702279 @default.
- W2912773127 cites W2051272671 @default.
- W2912773127 cites W2052143763 @default.
- W2912773127 cites W2063985808 @default.
- W2912773127 cites W2067767241 @default.
- W2912773127 cites W2081556646 @default.
- W2912773127 cites W2109114431 @default.
- W2912773127 cites W2113880421 @default.
- W2912773127 cites W2132314509 @default.
- W2912773127 cites W2137981452 @default.
- W2912773127 cites W2145855348 @default.
- W2912773127 cites W2150576019 @default.
- W2912773127 cites W2150874198 @default.
- W2912773127 cites W2157289081 @default.
- W2912773127 cites W2165886501 @default.
- W2912773127 cites W2169621740 @default.
- W2912773127 cites W2170707709 @default.
- W2912773127 cites W2239794783 @default.
- W2912773127 cites W2280188734 @default.
- W2912773127 cites W2294675754 @default.
- W2912773127 cites W2325650048 @default.
- W2912773127 cites W2416330230 @default.
- W2912773127 cites W2475388955 @default.
- W2912773127 cites W2493521008 @default.
- W2912773127 cites W2508526766 @default.
- W2912773127 cites W2528559837 @default.
- W2912773127 cites W2585580867 @default.
- W2912773127 cites W2740755884 @default.
- W2912773127 cites W2750364620 @default.
- W2912773127 cites W2761970766 @default.
- W2912773127 cites W2793754788 @default.
- W2912773127 cites W2888025604 @default.
- W2912773127 cites W2893896578 @default.
- W2912773127 cites W3122727549 @default.
- W2912773127 cites W3123432896 @default.
- W2912773127 cites W3124946654 @default.
- W2912773127 cites W4205184193 @default.
- W2912773127 cites W4239510810 @default.
- W2912773127 doi "https://doi.org/10.1016/j.ijresmar.2019.01.010" @default.
- W2912773127 hasPublicationYear "2019" @default.
- W2912773127 type Work @default.
- W2912773127 sameAs 2912773127 @default.
- W2912773127 citedByCount "79" @default.
- W2912773127 countsByYear W29127731272019 @default.
- W2912773127 countsByYear W29127731272020 @default.
- W2912773127 countsByYear W29127731272021 @default.
- W2912773127 countsByYear W29127731272022 @default.
- W2912773127 countsByYear W29127731272023 @default.
- W2912773127 crossrefType "journal-article" @default.
- W2912773127 hasAuthorship W2912773127A5002514740 @default.
- W2912773127 hasAuthorship W2912773127A5044033735 @default.
- W2912773127 hasAuthorship W2912773127A5067027289 @default.
- W2912773127 hasAuthorship W2912773127A5070414079 @default.
- W2912773127 hasBestOaLocation W29127731271 @default.
- W2912773127 hasConcept C119857082 @default.
- W2912773127 hasConcept C136764020 @default.
- W2912773127 hasConcept C151730666 @default.
- W2912773127 hasConcept C154945302 @default.
- W2912773127 hasConcept C15744967 @default.
- W2912773127 hasConcept C17744445 @default.
- W2912773127 hasConcept C199539241 @default.
- W2912773127 hasConcept C204321447 @default.
- W2912773127 hasConcept C23123220 @default.
- W2912773127 hasConcept C2777267654 @default.
- W2912773127 hasConcept C2780838233 @default.
- W2912773127 hasConcept C2780876879 @default.
- W2912773127 hasConcept C2986744138 @default.
- W2912773127 hasConcept C2987325470 @default.
- W2912773127 hasConcept C41008148 @default.
- W2912773127 hasConcept C518677369 @default.
- W2912773127 hasConcept C542102704 @default.
- W2912773127 hasConcept C66402592 @default.
- W2912773127 hasConcept C86803240 @default.
- W2912773127 hasConcept C94124525 @default.
- W2912773127 hasConceptScore W2912773127C119857082 @default.
- W2912773127 hasConceptScore W2912773127C136764020 @default.
- W2912773127 hasConceptScore W2912773127C151730666 @default.
- W2912773127 hasConceptScore W2912773127C154945302 @default.
- W2912773127 hasConceptScore W2912773127C15744967 @default.
- W2912773127 hasConceptScore W2912773127C17744445 @default.