Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912781557> ?p ?o ?g. }
- W2912781557 abstract "Online content posted by Arab users on social networks does not generally abide by the grammatical and spelling rules. These posts, or comments, are valuable because they contain users’ opinions towards different objects such as products, policies, institutions, and people. These opinions constitute important material for commercial and governmental institutions. Commercial institutions can use these opinions to steer marketing campaigns, optimize their products and know the weaknesses and/ or strengths of their products. Governmental institutions can benefit from the social networks posts to detect public opinion before or after legislating a new policy or law and to learn about the main issues that concern citizens. However, the huge size of online data and its noisy nature can hinder manual extraction and classification of opinions present in online comments. Given the irregularity of dialectal Arabic (or informal Arabic), tools developed for formally correct Arabic are of limited use. This is specifically the case when employed in sentiment analysis (SA) where the target of the analysis is social media content. This research implemented a system that addresses this challenge. This work can be roughly divided into three blocks: building a corpus for SA and manually tagging it to check the performance of the constructed lexicon-based (LB) classifier; building a sentiment lexicon that consists of three different sets of patterns (negative, positive, and spam); and finally implementing a classifier that employs the lexicon to classify Facebook comments. In addition to providing resources for dialectal Arabic SA and classifying Facebook comments, this work categorises reasons behind incorrect classification, provides preliminary solutions for some of them with focus on negation, and uses regular expressions to detect the presence of lexemes. This work also illustrates how the constructed classifier works along with its different levels of reporting. Moreover, it compares the performance of the LB classifier against Naive Bayes classifier and addresses how NLP tools such as POS tagging and Named Entity Recognition can be employed in SA. In addition, the work studies the performance of the implemented LB classifier and the developed sentiment lexicon when used to classify other corpora used in the literature, and the performance of lexicons used in the literature to classify the corpora constructed in this research. With minor changes, the classifier can be used in domain classification of documents (sports, science, news, etc.). The work ends with a discussion of research questions arising from the research reported." @default.
- W2912781557 created "2019-02-21" @default.
- W2912781557 creator A5074118159 @default.
- W2912781557 date "2018-11-22" @default.
- W2912781557 modified "2023-09-27" @default.
- W2912781557 title "Sentiment analysis and resources for informal Arabic text on social media" @default.
- W2912781557 cites W1503924817 @default.
- W2912781557 cites W1528167630 @default.
- W2912781557 cites W1531910480 @default.
- W2912781557 cites W1543096214 @default.
- W2912781557 cites W1566984846 @default.
- W2912781557 cites W1596473860 @default.
- W2912781557 cites W1660390307 @default.
- W2912781557 cites W1740779835 @default.
- W2912781557 cites W1743243001 @default.
- W2912781557 cites W1839863673 @default.
- W2912781557 cites W1974974326 @default.
- W2912781557 cites W1976526581 @default.
- W2912781557 cites W1984708705 @default.
- W2912781557 cites W1997113291 @default.
- W2912781557 cites W1998442272 @default.
- W2912781557 cites W2015930392 @default.
- W2912781557 cites W2022829918 @default.
- W2912781557 cites W2027232045 @default.
- W2912781557 cites W2029341294 @default.
- W2912781557 cites W2039688301 @default.
- W2912781557 cites W2040467972 @default.
- W2912781557 cites W2044743392 @default.
- W2912781557 cites W2063771604 @default.
- W2912781557 cites W2064853889 @default.
- W2912781557 cites W2071085454 @default.
- W2912781557 cites W2080950999 @default.
- W2912781557 cites W2081334131 @default.
- W2912781557 cites W2106519279 @default.
- W2912781557 cites W2109704865 @default.
- W2912781557 cites W2111995023 @default.
- W2912781557 cites W2114524997 @default.
- W2912781557 cites W2125689595 @default.
- W2912781557 cites W2125816832 @default.
- W2912781557 cites W2128420091 @default.
- W2912781557 cites W2129018774 @default.
- W2912781557 cites W2131305515 @default.
- W2912781557 cites W2137981452 @default.
- W2912781557 cites W2138792267 @default.
- W2912781557 cites W2139813717 @default.
- W2912781557 cites W2139984758 @default.
- W2912781557 cites W2140190241 @default.
- W2912781557 cites W2147272182 @default.
- W2912781557 cites W2149310982 @default.
- W2912781557 cites W2149709850 @default.
- W2912781557 cites W2151739810 @default.
- W2912781557 cites W2159928217 @default.
- W2912781557 cites W2162010436 @default.
- W2912781557 cites W2163455955 @default.
- W2912781557 cites W2166559705 @default.
- W2912781557 cites W2166706824 @default.
- W2912781557 cites W2222023357 @default.
- W2912781557 cites W2234490075 @default.
- W2912781557 cites W2250522473 @default.
- W2912781557 cites W2250659129 @default.
- W2912781557 cites W2250816155 @default.
- W2912781557 cites W2251337926 @default.
- W2912781557 cites W2251619088 @default.
- W2912781557 cites W2251939518 @default.
- W2912781557 cites W2252033489 @default.
- W2912781557 cites W2252037756 @default.
- W2912781557 cites W2252067416 @default.
- W2912781557 cites W2252085349 @default.
- W2912781557 cites W2279369549 @default.
- W2912781557 cites W2291000931 @default.
- W2912781557 cites W2292232452 @default.
- W2912781557 cites W2391085648 @default.
- W2912781557 cites W2467186984 @default.
- W2912781557 cites W2471147443 @default.
- W2912781557 cites W2572925254 @default.
- W2912781557 cites W2575929989 @default.
- W2912781557 cites W2576922051 @default.
- W2912781557 cites W2599005718 @default.
- W2912781557 cites W2742123861 @default.
- W2912781557 cites W2750939699 @default.
- W2912781557 cites W2751434455 @default.
- W2912781557 cites W2752201871 @default.
- W2912781557 cites W2758463473 @default.
- W2912781557 cites W2761816179 @default.
- W2912781557 cites W2767285835 @default.
- W2912781557 cites W2767369037 @default.
- W2912781557 cites W2772480271 @default.
- W2912781557 cites W2787893582 @default.
- W2912781557 cites W2916132663 @default.
- W2912781557 cites W2945793035 @default.
- W2912781557 cites W2992442068 @default.
- W2912781557 cites W3146306708 @default.
- W2912781557 cites W3168853887 @default.
- W2912781557 cites W1532399197 @default.
- W2912781557 cites W172005772 @default.
- W2912781557 cites W2094111388 @default.
- W2912781557 doi "https://doi.org/10.7190/shu-thesis-00118" @default.
- W2912781557 hasPublicationYear "2018" @default.
- W2912781557 type Work @default.
- W2912781557 sameAs 2912781557 @default.