Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912781893> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W2912781893 abstract "This work focuses on methods of data exploration using the mutual information and other related information measures. In particular, the author proposes a method to discover pairwise correlations among variables and to classify them into clusters. The master thesis presents the work done by the author during her internship in Tetra Pak. The core products of the company are the filling machines. The performance of a machine which fills shelf-stable food packages is called the aseptic performance and is defined by the long-run ratio between the number of not commercially sterile packages and the total number of packages filled by the machine. Nowadays, Tetra Pak collects a large amount of data in order to improve the aseptic performance. The dependencies among variables, in real-world applications like the aseptic performance characterisation, are often unknown and they are almost always characterized by nonlinear relationships. The aim of this study was to find a way to discover correlations among continuous and categorical variables in large datasets. A popular statistic in data mining is a measure of dependence. In order to deal with a large amount of variables that could have non-linear dependencies, an adequate measure is required. The idea is to explore datasets with both continuous and categorical variables and to group them into clusters using a distance based on the mutual information. This measure of dependence is well-established in information theory and it can be used to have a better understanding of the relationships among the features. The principal use of the proposed method is to find a set of uncorrelated variables in order to build predictive models and explain variables of interest." @default.
- W2912781893 created "2019-02-21" @default.
- W2912781893 creator A5029202837 @default.
- W2912781893 date "2018-09-17" @default.
- W2912781893 modified "2023-09-24" @default.
- W2912781893 title "Exploring association of several variables using mutual information" @default.
- W2912781893 hasPublicationYear "2018" @default.
- W2912781893 type Work @default.
- W2912781893 sameAs 2912781893 @default.
- W2912781893 citedByCount "0" @default.
- W2912781893 crossrefType "journal-article" @default.
- W2912781893 hasAuthorship W2912781893A5029202837 @default.
- W2912781893 hasConcept C105795698 @default.
- W2912781893 hasConcept C119857082 @default.
- W2912781893 hasConcept C124101348 @default.
- W2912781893 hasConcept C152139883 @default.
- W2912781893 hasConcept C154945302 @default.
- W2912781893 hasConcept C184898388 @default.
- W2912781893 hasConcept C193524817 @default.
- W2912781893 hasConcept C2780009758 @default.
- W2912781893 hasConcept C33923547 @default.
- W2912781893 hasConcept C41008148 @default.
- W2912781893 hasConcept C5274069 @default.
- W2912781893 hasConcept C89128539 @default.
- W2912781893 hasConceptScore W2912781893C105795698 @default.
- W2912781893 hasConceptScore W2912781893C119857082 @default.
- W2912781893 hasConceptScore W2912781893C124101348 @default.
- W2912781893 hasConceptScore W2912781893C152139883 @default.
- W2912781893 hasConceptScore W2912781893C154945302 @default.
- W2912781893 hasConceptScore W2912781893C184898388 @default.
- W2912781893 hasConceptScore W2912781893C193524817 @default.
- W2912781893 hasConceptScore W2912781893C2780009758 @default.
- W2912781893 hasConceptScore W2912781893C33923547 @default.
- W2912781893 hasConceptScore W2912781893C41008148 @default.
- W2912781893 hasConceptScore W2912781893C5274069 @default.
- W2912781893 hasConceptScore W2912781893C89128539 @default.
- W2912781893 hasLocation W29127818931 @default.
- W2912781893 hasOpenAccess W2912781893 @default.
- W2912781893 hasPrimaryLocation W29127818931 @default.
- W2912781893 hasRelatedWork W1012370460 @default.
- W2912781893 hasRelatedWork W1528046055 @default.
- W2912781893 hasRelatedWork W2180821227 @default.
- W2912781893 hasRelatedWork W2254841158 @default.
- W2912781893 hasRelatedWork W2273143112 @default.
- W2912781893 hasRelatedWork W2488064537 @default.
- W2912781893 hasRelatedWork W2505716316 @default.
- W2912781893 hasRelatedWork W2619843410 @default.
- W2912781893 hasRelatedWork W2767192956 @default.
- W2912781893 hasRelatedWork W2915031771 @default.
- W2912781893 hasRelatedWork W2951580354 @default.
- W2912781893 hasRelatedWork W3013431753 @default.
- W2912781893 hasRelatedWork W3022834251 @default.
- W2912781893 hasRelatedWork W3035833574 @default.
- W2912781893 hasRelatedWork W3151582537 @default.
- W2912781893 hasRelatedWork W3162196462 @default.
- W2912781893 hasRelatedWork W62665120 @default.
- W2912781893 hasRelatedWork W85354306 @default.
- W2912781893 hasRelatedWork W965492590 @default.
- W2912781893 hasRelatedWork W2187276023 @default.
- W2912781893 isParatext "false" @default.
- W2912781893 isRetracted "false" @default.
- W2912781893 magId "2912781893" @default.
- W2912781893 workType "article" @default.