Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912783011> ?p ?o ?g. }
- W2912783011 endingPage "1514" @default.
- W2912783011 startingPage "1508" @default.
- W2912783011 abstract "Accurately predicting changes in protein stability due to mutations is important for protein engineering and for understanding the functional consequences of missense mutations in proteins. We have developed DeepDDG, a neural network-based method, for use in the prediction of changes in the stability of proteins due to point mutations. The neural network was trained on more than 5700 manually curated experimental data points and was able to obtain a Pearson correlation coefficient of 0.48-0.56 for three independent test sets, which outperformed 11 other methods. Detailed analysis of the input features shows that the solvent accessible surface area of the mutated residue is the most important feature, which suggests that the buried hydrophobic area is the major determinant of protein stability. We expect this method to be useful for large-scale design and engineering of protein stability. The neural network is freely available to academic users at http://protein.org.cn/ddg.html ." @default.
- W2912783011 created "2019-02-21" @default.
- W2912783011 creator A5006969337 @default.
- W2912783011 creator A5045389074 @default.
- W2912783011 creator A5058353324 @default.
- W2912783011 creator A5073958648 @default.
- W2912783011 creator A5078156121 @default.
- W2912783011 date "2019-02-14" @default.
- W2912783011 modified "2023-10-03" @default.
- W2912783011 title "DeepDDG: Predicting the Stability Change of Protein Point Mutations Using Neural Networks" @default.
- W2912783011 cites W1596947964 @default.
- W2912783011 cites W2004510362 @default.
- W2912783011 cites W2023490488 @default.
- W2912783011 cites W2031553026 @default.
- W2912783011 cites W2051210555 @default.
- W2912783011 cites W2051628563 @default.
- W2912783011 cites W2060588922 @default.
- W2912783011 cites W2064488723 @default.
- W2912783011 cites W2065283382 @default.
- W2912783011 cites W2099524123 @default.
- W2912783011 cites W2103459989 @default.
- W2912783011 cites W2108101947 @default.
- W2912783011 cites W2113710405 @default.
- W2912783011 cites W2120819598 @default.
- W2912783011 cites W2121519777 @default.
- W2912783011 cites W2125677968 @default.
- W2912783011 cites W2130590409 @default.
- W2912783011 cites W2132540199 @default.
- W2912783011 cites W2133312664 @default.
- W2912783011 cites W2136513422 @default.
- W2912783011 cites W2141920771 @default.
- W2912783011 cites W2149580316 @default.
- W2912783011 cites W2160784118 @default.
- W2912783011 cites W2162870223 @default.
- W2912783011 cites W2172034373 @default.
- W2912783011 cites W2189911347 @default.
- W2912783011 cites W2234529989 @default.
- W2912783011 cites W2262896633 @default.
- W2912783011 cites W2414282720 @default.
- W2912783011 cites W2428593791 @default.
- W2912783011 cites W2560705618 @default.
- W2912783011 cites W2582187633 @default.
- W2912783011 cites W2592275197 @default.
- W2912783011 cites W2648949596 @default.
- W2912783011 cites W2749454133 @default.
- W2912783011 cites W2785273668 @default.
- W2912783011 cites W2794503008 @default.
- W2912783011 cites W2801491392 @default.
- W2912783011 cites W2916078022 @default.
- W2912783011 cites W2919115771 @default.
- W2912783011 cites W2949867299 @default.
- W2912783011 cites W2963457143 @default.
- W2912783011 cites W2964307930 @default.
- W2912783011 cites W3104705366 @default.
- W2912783011 doi "https://doi.org/10.1021/acs.jcim.8b00697" @default.
- W2912783011 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30759982" @default.
- W2912783011 hasPublicationYear "2019" @default.
- W2912783011 type Work @default.
- W2912783011 sameAs 2912783011 @default.
- W2912783011 citedByCount "125" @default.
- W2912783011 countsByYear W29127830112019 @default.
- W2912783011 countsByYear W29127830112020 @default.
- W2912783011 countsByYear W29127830112021 @default.
- W2912783011 countsByYear W29127830112022 @default.
- W2912783011 countsByYear W29127830112023 @default.
- W2912783011 crossrefType "journal-article" @default.
- W2912783011 hasAuthorship W2912783011A5006969337 @default.
- W2912783011 hasAuthorship W2912783011A5045389074 @default.
- W2912783011 hasAuthorship W2912783011A5058353324 @default.
- W2912783011 hasAuthorship W2912783011A5073958648 @default.
- W2912783011 hasAuthorship W2912783011A5078156121 @default.
- W2912783011 hasConcept C104317684 @default.
- W2912783011 hasConcept C11072593 @default.
- W2912783011 hasConcept C112972136 @default.
- W2912783011 hasConcept C119857082 @default.
- W2912783011 hasConcept C147816474 @default.
- W2912783011 hasConcept C153180895 @default.
- W2912783011 hasConcept C154945302 @default.
- W2912783011 hasConcept C159047783 @default.
- W2912783011 hasConcept C176944494 @default.
- W2912783011 hasConcept C181199279 @default.
- W2912783011 hasConcept C185592680 @default.
- W2912783011 hasConcept C2780092901 @default.
- W2912783011 hasConcept C3019232848 @default.
- W2912783011 hasConcept C41008148 @default.
- W2912783011 hasConcept C501734568 @default.
- W2912783011 hasConcept C50644808 @default.
- W2912783011 hasConcept C54355233 @default.
- W2912783011 hasConcept C55493867 @default.
- W2912783011 hasConcept C70721500 @default.
- W2912783011 hasConcept C75563809 @default.
- W2912783011 hasConcept C86803240 @default.
- W2912783011 hasConceptScore W2912783011C104317684 @default.
- W2912783011 hasConceptScore W2912783011C11072593 @default.
- W2912783011 hasConceptScore W2912783011C112972136 @default.
- W2912783011 hasConceptScore W2912783011C119857082 @default.
- W2912783011 hasConceptScore W2912783011C147816474 @default.
- W2912783011 hasConceptScore W2912783011C153180895 @default.