Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912787990> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2912787990 endingPage "337" @default.
- W2912787990 startingPage "319" @default.
- W2912787990 abstract "The present paper is useful for two reasons. First, as far as we know, the right operational matrix of the Riemann–Liouville fractional integral for triangular functions is introduced for the first time. So, hereafter, it can be applied in approximating any fractional optimal control problem in Caputo sense, over and over. Second, the rate of convergence of the triangular functions under a new-blown norm ‖.‖p,α in its corresponding space, denoted by Lp,α, is investigated. So far, the error analysis in Lp,α space has not been studied. In this article, both left and right operational matrices of the triangular functions for arbitrary fractional order integral α > 0 in Caputo sense are applied to approximate solutions of fractional linear optimal control systems which have a quadratic performance index. The necessary and sufficient optimality conditions are stated in a fractional two-point boundary value problem. This problem is converted to a set of coupled equations involving left and right Riemann–Liouville integral operators. Using these operational matrices of the triangular functions, an extension of the functions of control, state, co-state and other engaged functions is considered. This technique is a successful approach because of reducing such systems to a system of coupled Sylvester equations. Applying the definition of Kroneker product, a linear algebraic system containing the corresponding matrices of the original problem and the operational matrices of fractional order integral can be constructed. Accordingly, fractional linear quadratic optimal control can be solved indirectly. The advantage of this methodology, in addition to simplicity, is its low computational cost and its flexible precision. The simulation results confirm the reliability and validity of this method." @default.
- W2912787990 created "2019-02-21" @default.
- W2912787990 creator A5078618143 @default.
- W2912787990 date "2019-07-01" @default.
- W2912787990 modified "2023-10-12" @default.
- W2912787990 title "Solving state feedback control of fractional linear quadratic regulator systems using triangular functions" @default.
- W2912787990 cites W1968819460 @default.
- W2912787990 cites W1983165448 @default.
- W2912787990 cites W1985415638 @default.
- W2912787990 cites W1998418157 @default.
- W2912787990 cites W1999216164 @default.
- W2912787990 cites W2001438275 @default.
- W2912787990 cites W2002324029 @default.
- W2912787990 cites W2007500813 @default.
- W2912787990 cites W2015312610 @default.
- W2912787990 cites W2033987350 @default.
- W2912787990 cites W2035136654 @default.
- W2912787990 cites W2042720025 @default.
- W2912787990 cites W2048618474 @default.
- W2912787990 cites W2060759268 @default.
- W2912787990 cites W2062163287 @default.
- W2912787990 cites W2070161221 @default.
- W2912787990 cites W2072281876 @default.
- W2912787990 cites W2073782299 @default.
- W2912787990 cites W2083828525 @default.
- W2912787990 cites W2084795903 @default.
- W2912787990 cites W2141961077 @default.
- W2912787990 cites W2171017179 @default.
- W2912787990 cites W2327436874 @default.
- W2912787990 cites W2343525598 @default.
- W2912787990 cites W2472597555 @default.
- W2912787990 cites W2475298550 @default.
- W2912787990 cites W249382446 @default.
- W2912787990 cites W3099677191 @default.
- W2912787990 doi "https://doi.org/10.1016/j.cnsns.2019.01.023" @default.
- W2912787990 hasPublicationYear "2019" @default.
- W2912787990 type Work @default.
- W2912787990 sameAs 2912787990 @default.
- W2912787990 citedByCount "9" @default.
- W2912787990 countsByYear W29127879902019 @default.
- W2912787990 countsByYear W29127879902020 @default.
- W2912787990 countsByYear W29127879902021 @default.
- W2912787990 countsByYear W29127879902022 @default.
- W2912787990 countsByYear W29127879902023 @default.
- W2912787990 crossrefType "journal-article" @default.
- W2912787990 hasAuthorship W2912787990A5078618143 @default.
- W2912787990 hasConcept C106487976 @default.
- W2912787990 hasConcept C129844170 @default.
- W2912787990 hasConcept C134306372 @default.
- W2912787990 hasConcept C154249771 @default.
- W2912787990 hasConcept C159985019 @default.
- W2912787990 hasConcept C192562407 @default.
- W2912787990 hasConcept C2524010 @default.
- W2912787990 hasConcept C28826006 @default.
- W2912787990 hasConcept C33923547 @default.
- W2912787990 hasConcept C6802819 @default.
- W2912787990 hasConceptScore W2912787990C106487976 @default.
- W2912787990 hasConceptScore W2912787990C129844170 @default.
- W2912787990 hasConceptScore W2912787990C134306372 @default.
- W2912787990 hasConceptScore W2912787990C154249771 @default.
- W2912787990 hasConceptScore W2912787990C159985019 @default.
- W2912787990 hasConceptScore W2912787990C192562407 @default.
- W2912787990 hasConceptScore W2912787990C2524010 @default.
- W2912787990 hasConceptScore W2912787990C28826006 @default.
- W2912787990 hasConceptScore W2912787990C33923547 @default.
- W2912787990 hasConceptScore W2912787990C6802819 @default.
- W2912787990 hasLocation W29127879901 @default.
- W2912787990 hasOpenAccess W2912787990 @default.
- W2912787990 hasPrimaryLocation W29127879901 @default.
- W2912787990 hasRelatedWork W2055901031 @default.
- W2912787990 hasRelatedWork W2151359268 @default.
- W2912787990 hasRelatedWork W2320139629 @default.
- W2912787990 hasRelatedWork W2759086457 @default.
- W2912787990 hasRelatedWork W2910133962 @default.
- W2912787990 hasRelatedWork W3021793061 @default.
- W2912787990 hasRelatedWork W3196870860 @default.
- W2912787990 hasRelatedWork W4230638242 @default.
- W2912787990 hasRelatedWork W4301894456 @default.
- W2912787990 hasRelatedWork W1786638194 @default.
- W2912787990 hasVolume "73" @default.
- W2912787990 isParatext "false" @default.
- W2912787990 isRetracted "false" @default.
- W2912787990 magId "2912787990" @default.
- W2912787990 workType "article" @default.