Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912791652> ?p ?o ?g. }
- W2912791652 endingPage "484" @default.
- W2912791652 startingPage "469" @default.
- W2912791652 abstract "Obtaining slip distributions for earthquakes results in an ill-posed inverse problem. While this implies that only limited and uncertain information can be recovered from the data, inferences are typically made based only on a single regularized model. Here, we develop an inversion approach that can quantify uncertainties in a Bayesian probabilistic framework for the finite fault inversion (FFI) problem. The approach is suitably efficient for rapid source characterization and includes positivity constraints for model parameters, a common practice in FFI, via coordinate transformation to logarithmic space. The resulting inverse problem is nonlinear and the most probable solution can be obtained by iterative linearization. In addition, model uncertainties are quantified by approximating the posterior probability distribution by a Gaussian distribution in logarithmic space. This procedure is straightforward since an analytic expression for the Hessian of the objective function is obtained. In addition to positivity, we apply smoothness regularization to the model in logarithmic space. Simulations based on surface wave data show that smoothing in logarithmic space penalizes abrupt slip changes less than smoothing in linear space. Even so, the main slip features of models that are smooth in linear space are recovered well with logarithmic smoothing. Our synthetic experiments also show that, for the data set we consider, uncertainty is low at the shallow portion of the fault and increases with depth. In addition, a simulation with a large station azimuthal gap of 180° significantly increases the slip uncertainties. Further, the marginal posterior probabilities obtained from our approximate method are compared with numerical Markov Chain Monte Carlo sampling. We conclude that the Gaussian approximation is reasonable and meaningful inferences can be obtained from it. Finally, we apply the new approach to observed surface wave records from the great Illapel earthquake (Chile, 2015, Mw = 8.3). The location and amplitude of our inferred peak slip is consistent with other published solutions but the spatial slip distribution is more compact, likely because of the logarithmic regularization. We also find a minor slip patch downdip, mainly in an oblique direction, which is poorly resolved compared to the main slip patch and may be an artefact. We conclude that quantifying uncertainties of finite slip models is crucial for their meaningful interpretation, and therefore rapid uncertainty quantification can be critical if such models are to be used for emergency response." @default.
- W2912791652 created "2019-02-21" @default.
- W2912791652 creator A5026543595 @default.
- W2912791652 creator A5032045706 @default.
- W2912791652 creator A5066630581 @default.
- W2912791652 creator A5078531455 @default.
- W2912791652 date "2019-01-23" @default.
- W2912791652 modified "2023-10-10" @default.
- W2912791652 title "Efficient Bayesian uncertainty estimation in linear finite fault inversion with positivity constraints by employing a log-normal prior" @default.
- W2912791652 cites W1512208174 @default.
- W2912791652 cites W1807466655 @default.
- W2912791652 cites W1891298814 @default.
- W2912791652 cites W1918781448 @default.
- W2912791652 cites W1939915125 @default.
- W2912791652 cites W1982517923 @default.
- W2912791652 cites W1984892764 @default.
- W2912791652 cites W1997368457 @default.
- W2912791652 cites W2005292320 @default.
- W2912791652 cites W2012656342 @default.
- W2912791652 cites W2031604650 @default.
- W2912791652 cites W2033385054 @default.
- W2912791652 cites W2077947191 @default.
- W2912791652 cites W2091250903 @default.
- W2912791652 cites W2098287859 @default.
- W2912791652 cites W2108064160 @default.
- W2912791652 cites W2109105024 @default.
- W2912791652 cites W2115113389 @default.
- W2912791652 cites W2120887430 @default.
- W2912791652 cites W2137900548 @default.
- W2912791652 cites W2139390840 @default.
- W2912791652 cites W2140548646 @default.
- W2912791652 cites W2142635246 @default.
- W2912791652 cites W2144369984 @default.
- W2912791652 cites W2146617945 @default.
- W2912791652 cites W2149858353 @default.
- W2912791652 cites W2150518603 @default.
- W2912791652 cites W2160748827 @default.
- W2912791652 cites W2168175751 @default.
- W2912791652 cites W2168447320 @default.
- W2912791652 cites W2174881820 @default.
- W2912791652 cites W2176987470 @default.
- W2912791652 cites W2203044764 @default.
- W2912791652 cites W2229800309 @default.
- W2912791652 cites W2273037891 @default.
- W2912791652 cites W2275741740 @default.
- W2912791652 cites W2283999722 @default.
- W2912791652 cites W2510947509 @default.
- W2912791652 cites W2796252419 @default.
- W2912791652 cites W2800476165 @default.
- W2912791652 cites W2808045691 @default.
- W2912791652 cites W2899529505 @default.
- W2912791652 cites W3000332379 @default.
- W2912791652 cites W3022810349 @default.
- W2912791652 cites W3022903251 @default.
- W2912791652 doi "https://doi.org/10.1093/gji/ggz044" @default.
- W2912791652 hasPublicationYear "2019" @default.
- W2912791652 type Work @default.
- W2912791652 sameAs 2912791652 @default.
- W2912791652 citedByCount "11" @default.
- W2912791652 countsByYear W29127916522019 @default.
- W2912791652 countsByYear W29127916522020 @default.
- W2912791652 countsByYear W29127916522021 @default.
- W2912791652 countsByYear W29127916522022 @default.
- W2912791652 countsByYear W29127916522023 @default.
- W2912791652 crossrefType "journal-article" @default.
- W2912791652 hasAuthorship W2912791652A5026543595 @default.
- W2912791652 hasAuthorship W2912791652A5032045706 @default.
- W2912791652 hasAuthorship W2912791652A5066630581 @default.
- W2912791652 hasAuthorship W2912791652A5078531455 @default.
- W2912791652 hasBestOaLocation W29127916522 @default.
- W2912791652 hasConcept C105795698 @default.
- W2912791652 hasConcept C107673813 @default.
- W2912791652 hasConcept C111350023 @default.
- W2912791652 hasConcept C11413529 @default.
- W2912791652 hasConcept C121332964 @default.
- W2912791652 hasConcept C126255220 @default.
- W2912791652 hasConcept C134306372 @default.
- W2912791652 hasConcept C135252773 @default.
- W2912791652 hasConcept C185429906 @default.
- W2912791652 hasConcept C195268267 @default.
- W2912791652 hasConcept C203616005 @default.
- W2912791652 hasConcept C28826006 @default.
- W2912791652 hasConcept C33923547 @default.
- W2912791652 hasConcept C3770464 @default.
- W2912791652 hasConcept C39927690 @default.
- W2912791652 hasConcept C57830394 @default.
- W2912791652 hasConcept C97355855 @default.
- W2912791652 hasConceptScore W2912791652C105795698 @default.
- W2912791652 hasConceptScore W2912791652C107673813 @default.
- W2912791652 hasConceptScore W2912791652C111350023 @default.
- W2912791652 hasConceptScore W2912791652C11413529 @default.
- W2912791652 hasConceptScore W2912791652C121332964 @default.
- W2912791652 hasConceptScore W2912791652C126255220 @default.
- W2912791652 hasConceptScore W2912791652C134306372 @default.
- W2912791652 hasConceptScore W2912791652C135252773 @default.
- W2912791652 hasConceptScore W2912791652C185429906 @default.
- W2912791652 hasConceptScore W2912791652C195268267 @default.
- W2912791652 hasConceptScore W2912791652C203616005 @default.