Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912793700> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2912793700 abstract "In the last decade, the use of simple rating and comparison surveys has proliferated on social and digital media platforms to fuel recommendations. These simple surveys and their extrapolation with machine learning algorithms shed light on user preferences over large and growing pools of items, such as movies, songs and ads. Social scientists have a long history of measuring perceptions, preferences and opinions, often over smaller, discrete item sets with exhaustive rating or ranking surveys. This paper introduces simple surveys for social science application. We ran experiments to compare the predictive accuracy of both individual and aggregate comparative assessments using four types of simple surveys: pairwise comparisons and ratings on 2, 5 and continuous point scales in three distinct contexts: perceived Safety of Google Streetview Images, Likeability of Artwork, and Hilarity of Animal GIFs. Across contexts, we find that continuous scale ratings best predict individual assessments but consume the most time and cognitive effort. Binary choice surveys are quick and perform best to predict aggregate assessments, useful for collective decision tasks, but poorly predict personalized preferences, for which they are currently used by Netflix to recommend movies. Pairwise comparisons, by contrast, perform well to predict personal assessments, but poorly predict aggregate assessments despite being widely used to crowdsource ideas and collective preferences. We demonstrate how findings from these surveys can be visualized in a low-dimensional space that reveals distinct respondent interpretations of questions asked in each context. We conclude by reflecting on differences between sparse, incomplete simple surveys and their traditional survey counterparts in terms of efficiency, information elicited and settings in which knowing less about more may be critical for social science." @default.
- W2912793700 created "2019-02-21" @default.
- W2912793700 creator A5000351557 @default.
- W2912793700 creator A5027609579 @default.
- W2912793700 creator A5076633756 @default.
- W2912793700 date "2018-12-11" @default.
- W2912793700 modified "2023-09-27" @default.
- W2912793700 title "Simple Surveys: Response Retrieval Inspired by Recommendation Systems." @default.
- W2912793700 hasPublicationYear "2018" @default.
- W2912793700 type Work @default.
- W2912793700 sameAs 2912793700 @default.
- W2912793700 citedByCount "1" @default.
- W2912793700 countsByYear W29127937002019 @default.
- W2912793700 crossrefType "posted-content" @default.
- W2912793700 hasAuthorship W2912793700A5000351557 @default.
- W2912793700 hasAuthorship W2912793700A5027609579 @default.
- W2912793700 hasAuthorship W2912793700A5076633756 @default.
- W2912793700 hasConcept C111472728 @default.
- W2912793700 hasConcept C119857082 @default.
- W2912793700 hasConcept C138885662 @default.
- W2912793700 hasConcept C154945302 @default.
- W2912793700 hasConcept C15744967 @default.
- W2912793700 hasConcept C159985019 @default.
- W2912793700 hasConcept C166957645 @default.
- W2912793700 hasConcept C169760540 @default.
- W2912793700 hasConcept C17744445 @default.
- W2912793700 hasConcept C184898388 @default.
- W2912793700 hasConcept C189430467 @default.
- W2912793700 hasConcept C192562407 @default.
- W2912793700 hasConcept C199539241 @default.
- W2912793700 hasConcept C205649164 @default.
- W2912793700 hasConcept C23123220 @default.
- W2912793700 hasConcept C2522767166 @default.
- W2912793700 hasConcept C2524010 @default.
- W2912793700 hasConcept C26760741 @default.
- W2912793700 hasConcept C2776640315 @default.
- W2912793700 hasConcept C2778755073 @default.
- W2912793700 hasConcept C2779343474 @default.
- W2912793700 hasConcept C2780586882 @default.
- W2912793700 hasConcept C28719098 @default.
- W2912793700 hasConcept C33923547 @default.
- W2912793700 hasConcept C41008148 @default.
- W2912793700 hasConcept C4679612 @default.
- W2912793700 hasConcept C557471498 @default.
- W2912793700 hasConcept C58640448 @default.
- W2912793700 hasConceptScore W2912793700C111472728 @default.
- W2912793700 hasConceptScore W2912793700C119857082 @default.
- W2912793700 hasConceptScore W2912793700C138885662 @default.
- W2912793700 hasConceptScore W2912793700C154945302 @default.
- W2912793700 hasConceptScore W2912793700C15744967 @default.
- W2912793700 hasConceptScore W2912793700C159985019 @default.
- W2912793700 hasConceptScore W2912793700C166957645 @default.
- W2912793700 hasConceptScore W2912793700C169760540 @default.
- W2912793700 hasConceptScore W2912793700C17744445 @default.
- W2912793700 hasConceptScore W2912793700C184898388 @default.
- W2912793700 hasConceptScore W2912793700C189430467 @default.
- W2912793700 hasConceptScore W2912793700C192562407 @default.
- W2912793700 hasConceptScore W2912793700C199539241 @default.
- W2912793700 hasConceptScore W2912793700C205649164 @default.
- W2912793700 hasConceptScore W2912793700C23123220 @default.
- W2912793700 hasConceptScore W2912793700C2522767166 @default.
- W2912793700 hasConceptScore W2912793700C2524010 @default.
- W2912793700 hasConceptScore W2912793700C26760741 @default.
- W2912793700 hasConceptScore W2912793700C2776640315 @default.
- W2912793700 hasConceptScore W2912793700C2778755073 @default.
- W2912793700 hasConceptScore W2912793700C2779343474 @default.
- W2912793700 hasConceptScore W2912793700C2780586882 @default.
- W2912793700 hasConceptScore W2912793700C28719098 @default.
- W2912793700 hasConceptScore W2912793700C33923547 @default.
- W2912793700 hasConceptScore W2912793700C41008148 @default.
- W2912793700 hasConceptScore W2912793700C4679612 @default.
- W2912793700 hasConceptScore W2912793700C557471498 @default.
- W2912793700 hasConceptScore W2912793700C58640448 @default.
- W2912793700 hasLocation W29127937001 @default.
- W2912793700 hasOpenAccess W2912793700 @default.
- W2912793700 hasPrimaryLocation W29127937001 @default.
- W2912793700 hasRelatedWork W1995684969 @default.
- W2912793700 hasRelatedWork W2067812998 @default.
- W2912793700 hasRelatedWork W2120130223 @default.
- W2912793700 hasRelatedWork W2166516949 @default.
- W2912793700 hasRelatedWork W2465725186 @default.
- W2912793700 hasRelatedWork W2592167133 @default.
- W2912793700 hasRelatedWork W2837001128 @default.
- W2912793700 hasRelatedWork W2912109452 @default.
- W2912793700 hasRelatedWork W2941950885 @default.
- W2912793700 hasRelatedWork W2949125694 @default.
- W2912793700 hasRelatedWork W2951644833 @default.
- W2912793700 hasRelatedWork W2963541497 @default.
- W2912793700 hasRelatedWork W3091896932 @default.
- W2912793700 hasRelatedWork W3100152206 @default.
- W2912793700 hasRelatedWork W3100631519 @default.
- W2912793700 hasRelatedWork W3102639576 @default.
- W2912793700 hasRelatedWork W3119503528 @default.
- W2912793700 hasRelatedWork W3163793633 @default.
- W2912793700 hasRelatedWork W621774251 @default.
- W2912793700 hasRelatedWork W71130999 @default.
- W2912793700 isParatext "false" @default.
- W2912793700 isRetracted "false" @default.
- W2912793700 magId "2912793700" @default.
- W2912793700 workType "article" @default.