Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912797248> ?p ?o ?g. }
- W2912797248 endingPage "36" @default.
- W2912797248 startingPage "6" @default.
- W2912797248 abstract "The random neural network (RNN) is a mathematical model for an “integrate and fire” spiking network that closely resembles the stochastic behavior of neurons in mammalian brains. Since its proposal in 1989, there have been numerous investigations into the RNN's applications and learning algorithms. Deep learning (DL) has achieved great success in machine learning. Recently, the properties of the RNN for DL have been investigated, in order to combine their power. Recent results demonstrate that the gap between RNNs and DL can be bridged and the DL tools based on the RNN are faster and can potentially be used with less energy expenditure than existing methods." @default.
- W2912797248 created "2019-02-21" @default.
- W2912797248 creator A5035643040 @default.
- W2912797248 date "2019-01-30" @default.
- W2912797248 modified "2023-09-26" @default.
- W2912797248 title "RANDOM NEURAL NETWORK METHODS AND DEEP LEARNING" @default.
- W2912797248 cites W1504144860 @default.
- W2912797248 cites W1508677314 @default.
- W2912797248 cites W1524847248 @default.
- W2912797248 cites W1566442329 @default.
- W2912797248 cites W1595159159 @default.
- W2912797248 cites W1902027874 @default.
- W2912797248 cites W1916390656 @default.
- W2912797248 cites W1953766815 @default.
- W2912797248 cites W1970653610 @default.
- W2912797248 cites W1975304182 @default.
- W2912797248 cites W1977318406 @default.
- W2912797248 cites W1980925810 @default.
- W2912797248 cites W1982029046 @default.
- W2912797248 cites W1988115241 @default.
- W2912797248 cites W1995341919 @default.
- W2912797248 cites W1996503769 @default.
- W2912797248 cites W2003947294 @default.
- W2912797248 cites W2004269115 @default.
- W2912797248 cites W2006004974 @default.
- W2912797248 cites W2008095228 @default.
- W2912797248 cites W2010470943 @default.
- W2912797248 cites W2018027127 @default.
- W2912797248 cites W2024975768 @default.
- W2912797248 cites W2028319341 @default.
- W2912797248 cites W2031314110 @default.
- W2912797248 cites W2032663983 @default.
- W2912797248 cites W2033213616 @default.
- W2912797248 cites W2036951897 @default.
- W2912797248 cites W2039919356 @default.
- W2912797248 cites W2040870580 @default.
- W2912797248 cites W2043545458 @default.
- W2912797248 cites W2045643717 @default.
- W2912797248 cites W2047161049 @default.
- W2912797248 cites W2050037040 @default.
- W2912797248 cites W2051203581 @default.
- W2912797248 cites W2056377128 @default.
- W2912797248 cites W2056494836 @default.
- W2912797248 cites W2065261386 @default.
- W2912797248 cites W2070938527 @default.
- W2912797248 cites W2074419909 @default.
- W2912797248 cites W2077109232 @default.
- W2912797248 cites W2079299054 @default.
- W2912797248 cites W2080370442 @default.
- W2912797248 cites W2084300071 @default.
- W2912797248 cites W2087861759 @default.
- W2912797248 cites W2095613246 @default.
- W2912797248 cites W2100495367 @default.
- W2912797248 cites W2106253253 @default.
- W2912797248 cites W2106280476 @default.
- W2912797248 cites W2107564197 @default.
- W2912797248 cites W2110537886 @default.
- W2912797248 cites W2111072639 @default.
- W2912797248 cites W2112796928 @default.
- W2912797248 cites W2113442785 @default.
- W2912797248 cites W2116216716 @default.
- W2912797248 cites W2121777042 @default.
- W2912797248 cites W2121896394 @default.
- W2912797248 cites W2122376145 @default.
- W2912797248 cites W2127322469 @default.
- W2912797248 cites W2130095783 @default.
- W2912797248 cites W2134557905 @default.
- W2912797248 cites W2136922672 @default.
- W2912797248 cites W2137983211 @default.
- W2912797248 cites W2140886546 @default.
- W2912797248 cites W2141039717 @default.
- W2912797248 cites W2144133318 @default.
- W2912797248 cites W2144359569 @default.
- W2912797248 cites W2147292097 @default.
- W2912797248 cites W2147374078 @default.
- W2912797248 cites W2148014386 @default.
- W2912797248 cites W2148361026 @default.
- W2912797248 cites W2151999193 @default.
- W2912797248 cites W2157609081 @default.
- W2912797248 cites W2157880825 @default.
- W2912797248 cites W2159951683 @default.
- W2912797248 cites W2159993801 @default.
- W2912797248 cites W2162231234 @default.
- W2912797248 cites W2165977465 @default.
- W2912797248 cites W2167999447 @default.
- W2912797248 cites W2194775991 @default.
- W2912797248 cites W2257979135 @default.
- W2912797248 cites W2293168792 @default.
- W2912797248 cites W2301541953 @default.
- W2912797248 cites W2314414591 @default.
- W2912797248 cites W2314470091 @default.
- W2912797248 cites W2331042062 @default.
- W2912797248 cites W2341783944 @default.
- W2912797248 cites W2464458156 @default.
- W2912797248 cites W2498029196 @default.
- W2912797248 cites W2516853297 @default.
- W2912797248 cites W2552324112 @default.
- W2912797248 cites W2554593340 @default.