Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912802243> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W2912802243 abstract "In the world of mathematical analysis, many counterintuitive answers arise from the manipulation of seemingly unrelated concepts, ideas, or functions. For example, Euler showed that $e^{ipi} + 1 = 0$, whereas Gauss proved that the area underneath $y = e^{-x^2}$ spanning the whole real axis is $ sqrt{pi} $. In this paper, we will determine the closed-form solution of the improper integral [ I_n = int_{0}^{infty} frac{ln{x}}{x^n+1} dx, forall n in mathbb{R} text{, with} n > 1. ] Determining closed-form solutions of improper integrals have real implications not only in easing the solving of similar, yet more difficult integrals, but also in speeding up numerical approximations of the answer by making them more efficient. Following our calculations, we derived the formula [ I_n = int_{0}^{infty} frac{ln{x}}{x^n+1} dx = -frac{pi^2}{n^2}cot{frac{pi}{n}}csc{frac{pi}{n}} = -frac{d}{dn} Bigg[ GammaBig(1-frac{1}{n}Big) GammaBig(frac{1}{n}Big) Bigg]. ]" @default.
- W2912802243 created "2019-02-21" @default.
- W2912802243 creator A5057760760 @default.
- W2912802243 date "2019-02-12" @default.
- W2912802243 modified "2023-09-27" @default.
- W2912802243 title "On a special kind of integral" @default.
- W2912802243 cites W1552202016 @default.
- W2912802243 cites W2801179766 @default.
- W2912802243 cites W2995136929 @default.
- W2912802243 hasPublicationYear "2019" @default.
- W2912802243 type Work @default.
- W2912802243 sameAs 2912802243 @default.
- W2912802243 citedByCount "0" @default.
- W2912802243 crossrefType "posted-content" @default.
- W2912802243 hasAuthorship W2912802243A5057760760 @default.
- W2912802243 hasConcept C114614502 @default.
- W2912802243 hasConcept C121332964 @default.
- W2912802243 hasConcept C161794534 @default.
- W2912802243 hasConcept C2524010 @default.
- W2912802243 hasConcept C33923547 @default.
- W2912802243 hasConcept C37914503 @default.
- W2912802243 hasConcept C53009064 @default.
- W2912802243 hasConcept C62520636 @default.
- W2912802243 hasConceptScore W2912802243C114614502 @default.
- W2912802243 hasConceptScore W2912802243C121332964 @default.
- W2912802243 hasConceptScore W2912802243C161794534 @default.
- W2912802243 hasConceptScore W2912802243C2524010 @default.
- W2912802243 hasConceptScore W2912802243C33923547 @default.
- W2912802243 hasConceptScore W2912802243C37914503 @default.
- W2912802243 hasConceptScore W2912802243C53009064 @default.
- W2912802243 hasConceptScore W2912802243C62520636 @default.
- W2912802243 hasLocation W29128022431 @default.
- W2912802243 hasOpenAccess W2912802243 @default.
- W2912802243 hasPrimaryLocation W29128022431 @default.
- W2912802243 hasRelatedWork W1656906480 @default.
- W2912802243 hasRelatedWork W1979553749 @default.
- W2912802243 hasRelatedWork W2052738043 @default.
- W2912802243 hasRelatedWork W2082782519 @default.
- W2912802243 hasRelatedWork W2090515430 @default.
- W2912802243 hasRelatedWork W2262217176 @default.
- W2912802243 hasRelatedWork W2901913040 @default.
- W2912802243 hasRelatedWork W2945057470 @default.
- W2912802243 hasRelatedWork W2953767926 @default.
- W2912802243 hasRelatedWork W2956082580 @default.
- W2912802243 hasRelatedWork W2963260657 @default.
- W2912802243 hasRelatedWork W3081825557 @default.
- W2912802243 hasRelatedWork W3090990336 @default.
- W2912802243 hasRelatedWork W3100684467 @default.
- W2912802243 hasRelatedWork W3103683050 @default.
- W2912802243 hasRelatedWork W3127959870 @default.
- W2912802243 hasRelatedWork W3136795162 @default.
- W2912802243 hasRelatedWork W3138025950 @default.
- W2912802243 hasRelatedWork W3163491031 @default.
- W2912802243 hasRelatedWork W3174751351 @default.
- W2912802243 isParatext "false" @default.
- W2912802243 isRetracted "false" @default.
- W2912802243 magId "2912802243" @default.
- W2912802243 workType "article" @default.