Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912802963> ?p ?o ?g. }
- W2912802963 endingPage "1" @default.
- W2912802963 startingPage "1" @default.
- W2912802963 abstract "Computational methods including centrality and machine learning-based methods have been proposed to identify essential proteins for understanding the minimum requirements of the survival and evolution of a cell. In centrality methods, researchers are required to design a score function which is based on prior knowledge, yet is usually not sufficient to capture the complexity of biological information. In machine learning-based methods, some selected biological features cannot represent the complete properties of biological information as they lack a computational framework to automatically select features. To tackle these problems, we propose a deep learning framework to automatically learn biological features without prior knowledge. We use node2vec technique to automatically learn a richer representation of protein-protein interaction (PPI) network topologies than a score function. Bidirectional long short term memory cells are applied to capture non-local relationships in gene expression data. For subcellular localization information, we exploit a high dimensional indicator vector to characterize their feature. To evaluate the performance of our method, we tested it on PPI network of S. cerevisiae. Our experimental results demonstrate that the performance of our method is better than traditional centrality methods and is superior to existing machine learning-based methods. To explore which of the three types of biological information is the most vital element, we conduct an ablation study by removing each component in turn. Our results show that the PPI network embedding contributes most to the improvement. In addition, gene expression profiles and subcellular localization information are also helpful to improve the performance in identification of essential proteins." @default.
- W2912802963 created "2019-02-21" @default.
- W2912802963 creator A5029977184 @default.
- W2912802963 creator A5033885404 @default.
- W2912802963 creator A5038582529 @default.
- W2912802963 creator A5039575121 @default.
- W2912802963 creator A5074706280 @default.
- W2912802963 creator A5079316675 @default.
- W2912802963 creator A5091157395 @default.
- W2912802963 date "2019-01-01" @default.
- W2912802963 modified "2023-10-16" @default.
- W2912802963 title "A deep learning framework for identifying essential proteins by integrating multiple types of biological information" @default.
- W2912802963 cites W1503938960 @default.
- W2912802963 cites W1714524773 @default.
- W2912802963 cites W1968050693 @default.
- W2912802963 cites W1973758399 @default.
- W2912802963 cites W1986310535 @default.
- W2912802963 cites W2003390994 @default.
- W2912802963 cites W2005708641 @default.
- W2912802963 cites W2005740247 @default.
- W2912802963 cites W2007245700 @default.
- W2912802963 cites W2017975254 @default.
- W2912802963 cites W2025971310 @default.
- W2912802963 cites W2036799174 @default.
- W2912802963 cites W2047998870 @default.
- W2912802963 cites W2048386825 @default.
- W2912802963 cites W2060816398 @default.
- W2912802963 cites W2064675550 @default.
- W2912802963 cites W2074443723 @default.
- W2912802963 cites W2079735306 @default.
- W2912802963 cites W2087194317 @default.
- W2912802963 cites W2088590769 @default.
- W2912802963 cites W2089125183 @default.
- W2912802963 cites W2091185605 @default.
- W2912802963 cites W2094934530 @default.
- W2912802963 cites W2098100188 @default.
- W2912802963 cites W2099651125 @default.
- W2912802963 cites W2105089945 @default.
- W2912802963 cites W2105295234 @default.
- W2912802963 cites W2112466127 @default.
- W2912802963 cites W2113443914 @default.
- W2912802963 cites W2113553645 @default.
- W2912802963 cites W2115746733 @default.
- W2912802963 cites W2118830783 @default.
- W2912802963 cites W2119114096 @default.
- W2912802963 cites W2124354935 @default.
- W2912802963 cites W2125580930 @default.
- W2912802963 cites W2130253098 @default.
- W2912802963 cites W2130790725 @default.
- W2912802963 cites W2142437744 @default.
- W2912802963 cites W2146447390 @default.
- W2912802963 cites W2150744251 @default.
- W2912802963 cites W2162891889 @default.
- W2912802963 cites W2163485494 @default.
- W2912802963 cites W2512143001 @default.
- W2912802963 cites W2563010899 @default.
- W2912802963 cites W2586452838 @default.
- W2912802963 cites W2750770743 @default.
- W2912802963 cites W2771333313 @default.
- W2912802963 cites W2779222065 @default.
- W2912802963 cites W2790765877 @default.
- W2912802963 cites W2792330169 @default.
- W2912802963 cites W2908485946 @default.
- W2912802963 cites W2915554882 @default.
- W2912802963 cites W2962756421 @default.
- W2912802963 doi "https://doi.org/10.1109/tcbb.2019.2897679" @default.
- W2912802963 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30736002" @default.
- W2912802963 hasPublicationYear "2019" @default.
- W2912802963 type Work @default.
- W2912802963 sameAs 2912802963 @default.
- W2912802963 citedByCount "60" @default.
- W2912802963 countsByYear W29128029632019 @default.
- W2912802963 countsByYear W29128029632020 @default.
- W2912802963 countsByYear W29128029632021 @default.
- W2912802963 countsByYear W29128029632022 @default.
- W2912802963 countsByYear W29128029632023 @default.
- W2912802963 crossrefType "journal-article" @default.
- W2912802963 hasAuthorship W2912802963A5029977184 @default.
- W2912802963 hasAuthorship W2912802963A5033885404 @default.
- W2912802963 hasAuthorship W2912802963A5038582529 @default.
- W2912802963 hasAuthorship W2912802963A5039575121 @default.
- W2912802963 hasAuthorship W2912802963A5074706280 @default.
- W2912802963 hasAuthorship W2912802963A5079316675 @default.
- W2912802963 hasAuthorship W2912802963A5091157395 @default.
- W2912802963 hasConcept C114614502 @default.
- W2912802963 hasConcept C116834253 @default.
- W2912802963 hasConcept C119857082 @default.
- W2912802963 hasConcept C12267149 @default.
- W2912802963 hasConcept C124101348 @default.
- W2912802963 hasConcept C138885662 @default.
- W2912802963 hasConcept C14036430 @default.
- W2912802963 hasConcept C154945302 @default.
- W2912802963 hasConcept C165696696 @default.
- W2912802963 hasConcept C17744445 @default.
- W2912802963 hasConcept C199539241 @default.
- W2912802963 hasConcept C201797286 @default.
- W2912802963 hasConcept C2776359362 @default.
- W2912802963 hasConcept C2776401178 @default.