Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912803241> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2912803241 endingPage "65" @default.
- W2912803241 startingPage "65" @default.
- W2912803241 abstract "Johannes Kepler and Isaac Newton inspired generations of researchers to study properties of elliptic, hyperbolic, and parabolic paths of planets orbiting around the Sun. After the intensive study of those conic sections during the last four hundred years it is believed that this topic is practically closed and the 21st Century cannot bring anything new to this subject. Can we add to those visible orbits from the Aristotelian World some curves from the Plato’s Realm that might bring to us new information about those conic sections? Isaac Newton in 1687 discovered one such curve - the evolute of the hyperbola - behind his famous gravitation law. In our model we have been working with Newton’s Hyperbola in a more complex way. We have found that the interplay of the empty focus M (= Menaechmus - the discoverer of hyperbola), the center of the hyperbola A (= Apollonius of Perga - the Great Geometer), and the occupied focus N (= Isaac Newton - the Great Mathematician) together form the MAN Hyperbola with several interesting hidden properties of those hyperbolic paths. We have found that the auxiliary circle of the MAN Hyperbola could be used as a new hodograph and we will get the tangent velocity of planets around the Sun and their moment of tangent momentum. We can use the lemniscate of Bernoulli as the pedal curve of that hyperbola and we will get the normal velocities of those orbiting planets and their moment of normal momentum. The first derivation of this moment of normal momentum will reveal the torque of that hyperbola and we can estimate the precession of hyperbolic paths and to test this model for the case of the flyby anomalies. The auxiliary circle might be used as the inversion curve of that hyperbola and the Lemniscate of Bernoulli could help us to describe the Kepler’s Equation (KE) for the hyperbolic paths. Have we found the Arriadne’s Thread leading out of the Labyrinth or are we still lost in the Labyrinth?" @default.
- W2912803241 created "2019-02-21" @default.
- W2912803241 creator A5044891361 @default.
- W2912803241 date "2019-01-29" @default.
- W2912803241 modified "2023-10-18" @default.
- W2912803241 title "Newton’s Hyperbola Observed from Newton’s Evolute (1687), Gudermann’s Circle (1833), the Auxiliary Circle (Pedal Curve and Inversion Curve), the Lemniscate of Bernoulli (1694) (Pedal Curve and Inversion Curve) (09.01.2019)" @default.
- W2912803241 cites W1504615552 @default.
- W2912803241 cites W2004664479 @default.
- W2912803241 cites W2010411161 @default.
- W2912803241 cites W2118681410 @default.
- W2912803241 cites W2336122406 @default.
- W2912803241 cites W2524287351 @default.
- W2912803241 cites W2787105917 @default.
- W2912803241 cites W2903030543 @default.
- W2912803241 cites W3007833553 @default.
- W2912803241 cites W37032343 @default.
- W2912803241 cites W591138658 @default.
- W2912803241 doi "https://doi.org/10.5539/apr.v11n1p65" @default.
- W2912803241 hasPublicationYear "2019" @default.
- W2912803241 type Work @default.
- W2912803241 sameAs 2912803241 @default.
- W2912803241 citedByCount "0" @default.
- W2912803241 crossrefType "journal-article" @default.
- W2912803241 hasAuthorship W2912803241A5044891361 @default.
- W2912803241 hasBestOaLocation W29128032411 @default.
- W2912803241 hasConcept C108598597 @default.
- W2912803241 hasConcept C121332964 @default.
- W2912803241 hasConcept C134306372 @default.
- W2912803241 hasConcept C138187205 @default.
- W2912803241 hasConcept C145050668 @default.
- W2912803241 hasConcept C2524010 @default.
- W2912803241 hasConcept C33923547 @default.
- W2912803241 hasConcept C40890689 @default.
- W2912803241 hasConcept C74261601 @default.
- W2912803241 hasConceptScore W2912803241C108598597 @default.
- W2912803241 hasConceptScore W2912803241C121332964 @default.
- W2912803241 hasConceptScore W2912803241C134306372 @default.
- W2912803241 hasConceptScore W2912803241C138187205 @default.
- W2912803241 hasConceptScore W2912803241C145050668 @default.
- W2912803241 hasConceptScore W2912803241C2524010 @default.
- W2912803241 hasConceptScore W2912803241C33923547 @default.
- W2912803241 hasConceptScore W2912803241C40890689 @default.
- W2912803241 hasConceptScore W2912803241C74261601 @default.
- W2912803241 hasIssue "1" @default.
- W2912803241 hasLocation W29128032411 @default.
- W2912803241 hasOpenAccess W2912803241 @default.
- W2912803241 hasPrimaryLocation W29128032411 @default.
- W2912803241 hasRelatedWork W120100228 @default.
- W2912803241 hasRelatedWork W2056527056 @default.
- W2912803241 hasRelatedWork W2064257899 @default.
- W2912803241 hasRelatedWork W2219641710 @default.
- W2912803241 hasRelatedWork W2356585856 @default.
- W2912803241 hasRelatedWork W2381193352 @default.
- W2912803241 hasRelatedWork W3016917694 @default.
- W2912803241 hasRelatedWork W3022784553 @default.
- W2912803241 hasRelatedWork W3034162989 @default.
- W2912803241 hasRelatedWork W610486495 @default.
- W2912803241 hasVolume "11" @default.
- W2912803241 isParatext "false" @default.
- W2912803241 isRetracted "false" @default.
- W2912803241 magId "2912803241" @default.
- W2912803241 workType "article" @default.