Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912803327> ?p ?o ?g. }
- W2912803327 endingPage "055402" @default.
- W2912803327 startingPage "055402" @default.
- W2912803327 abstract "Traditional methods used for intelligent condition monitoring and diagnosis significantly depend on manual feature extraction and selection. To address this issue, a transfer learning-convolutional neural network (TLCNN) based on AlexNet is proposed for bearing fault diagnosis. Firstly, a 2D image representation method converts vibration signals to 2D time-frequency images. Secondly, the proposed TLCNN model extracts the features of the 2D time-frequency images and achieves the classification conditions of the bearing, which is faster to train and more accurate. Thirdly, t-distributed stochastic neighbor embedding (t-SNE) is applied to visualize the feature learning process to demonstrate the feature learning ability of the proposed model. The experimental results verify that the proposed fault diagnosis model has higher accuracy and has much better robustness against noise than other deep learning and traditional methods." @default.
- W2912803327 created "2019-02-21" @default.
- W2912803327 creator A5016262630 @default.
- W2912803327 creator A5032090776 @default.
- W2912803327 creator A5032844333 @default.
- W2912803327 creator A5041011767 @default.
- W2912803327 creator A5045921163 @default.
- W2912803327 creator A5062416906 @default.
- W2912803327 date "2019-04-02" @default.
- W2912803327 modified "2023-10-03" @default.
- W2912803327 title "A novel bearing fault diagnosis method based on 2D image representation and transfer learning-convolutional neural network" @default.
- W2912803327 cites W1597576211 @default.
- W2912803327 cites W1967352108 @default.
- W2912803327 cites W1967879920 @default.
- W2912803327 cites W1969399998 @default.
- W2912803327 cites W2003205626 @default.
- W2912803327 cites W2028040850 @default.
- W2912803327 cites W2032504282 @default.
- W2912803327 cites W2039375105 @default.
- W2912803327 cites W2058514560 @default.
- W2912803327 cites W2063592879 @default.
- W2912803327 cites W2085862958 @default.
- W2912803327 cites W2094625209 @default.
- W2912803327 cites W2184192902 @default.
- W2912803327 cites W2217684237 @default.
- W2912803327 cites W2219903032 @default.
- W2912803327 cites W2305066525 @default.
- W2912803327 cites W2317595875 @default.
- W2912803327 cites W2404692435 @default.
- W2912803327 cites W2485614840 @default.
- W2912803327 cites W2523408358 @default.
- W2912803327 cites W2556345765 @default.
- W2912803327 cites W2603304445 @default.
- W2912803327 cites W2606521772 @default.
- W2912803327 cites W2612554669 @default.
- W2912803327 cites W2692693673 @default.
- W2912803327 cites W2744790985 @default.
- W2912803327 cites W2766238033 @default.
- W2912803327 cites W2767031373 @default.
- W2912803327 cites W2794869810 @default.
- W2912803327 cites W2809350318 @default.
- W2912803327 doi "https://doi.org/10.1088/1361-6501/ab0793" @default.
- W2912803327 hasPublicationYear "2019" @default.
- W2912803327 type Work @default.
- W2912803327 sameAs 2912803327 @default.
- W2912803327 citedByCount "95" @default.
- W2912803327 countsByYear W29128033272019 @default.
- W2912803327 countsByYear W29128033272020 @default.
- W2912803327 countsByYear W29128033272021 @default.
- W2912803327 countsByYear W29128033272022 @default.
- W2912803327 countsByYear W29128033272023 @default.
- W2912803327 crossrefType "journal-article" @default.
- W2912803327 hasAuthorship W2912803327A5016262630 @default.
- W2912803327 hasAuthorship W2912803327A5032090776 @default.
- W2912803327 hasAuthorship W2912803327A5032844333 @default.
- W2912803327 hasAuthorship W2912803327A5041011767 @default.
- W2912803327 hasAuthorship W2912803327A5045921163 @default.
- W2912803327 hasAuthorship W2912803327A5062416906 @default.
- W2912803327 hasConcept C108583219 @default.
- W2912803327 hasConcept C115961682 @default.
- W2912803327 hasConcept C127313418 @default.
- W2912803327 hasConcept C150899416 @default.
- W2912803327 hasConcept C153180895 @default.
- W2912803327 hasConcept C154945302 @default.
- W2912803327 hasConcept C165205528 @default.
- W2912803327 hasConcept C175551986 @default.
- W2912803327 hasConcept C17744445 @default.
- W2912803327 hasConcept C199539241 @default.
- W2912803327 hasConcept C199978012 @default.
- W2912803327 hasConcept C2776359362 @default.
- W2912803327 hasConcept C31972630 @default.
- W2912803327 hasConcept C41008148 @default.
- W2912803327 hasConcept C50644808 @default.
- W2912803327 hasConcept C81363708 @default.
- W2912803327 hasConcept C94625758 @default.
- W2912803327 hasConceptScore W2912803327C108583219 @default.
- W2912803327 hasConceptScore W2912803327C115961682 @default.
- W2912803327 hasConceptScore W2912803327C127313418 @default.
- W2912803327 hasConceptScore W2912803327C150899416 @default.
- W2912803327 hasConceptScore W2912803327C153180895 @default.
- W2912803327 hasConceptScore W2912803327C154945302 @default.
- W2912803327 hasConceptScore W2912803327C165205528 @default.
- W2912803327 hasConceptScore W2912803327C175551986 @default.
- W2912803327 hasConceptScore W2912803327C17744445 @default.
- W2912803327 hasConceptScore W2912803327C199539241 @default.
- W2912803327 hasConceptScore W2912803327C199978012 @default.
- W2912803327 hasConceptScore W2912803327C2776359362 @default.
- W2912803327 hasConceptScore W2912803327C31972630 @default.
- W2912803327 hasConceptScore W2912803327C41008148 @default.
- W2912803327 hasConceptScore W2912803327C50644808 @default.
- W2912803327 hasConceptScore W2912803327C81363708 @default.
- W2912803327 hasConceptScore W2912803327C94625758 @default.
- W2912803327 hasIssue "5" @default.
- W2912803327 hasLocation W29128033271 @default.
- W2912803327 hasOpenAccess W2912803327 @default.
- W2912803327 hasPrimaryLocation W29128033271 @default.
- W2912803327 hasRelatedWork W2738221750 @default.
- W2912803327 hasRelatedWork W2997709384 @default.