Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912803559> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2912803559 abstract "Recent applications like social networks and IoT are the main source of the massive amount of data generated every day. Time series data is a major form where data is sequenced and indexed by timestamps. Multiple data mining techniques are applied to discover the behavior of time series datasets, periodic pattern mining is one of them. Many sequential pattern mining algorithms were presented, some of them built suffix trees and performed early pruning while other algorithms used pattern-growth techniques such as projection. A few algorithms performed Apriori-based techniques where lattice trees were built and traversed. However, most algorithms suffer from time and space issues when mining large scale time series sequences. In our paper, we present a solution that utilizes advanced and sophisticated distributed systems such as MapReduce framework. It splits the original sequence and distributes its segments across thousands of nodes in the MapReduce infrastructure. We use different training datasets to evaluate both traditional pattern mining algorithms and our MapReduce solution. After analyzing our solution in terms of time complexity, efficiency and accuracy, we clarify the advantages of processing data segments using periodic pattern mining along with MapReduce framework." @default.
- W2912803559 created "2019-02-21" @default.
- W2912803559 creator A5026547820 @default.
- W2912803559 creator A5087753797 @default.
- W2912803559 date "2018-12-01" @default.
- W2912803559 modified "2023-09-27" @default.
- W2912803559 title "Towards a New Approach to Empower Periodic Pattern Mining for Massive Data using Map-Reduce" @default.
- W2912803559 cites W1985716338 @default.
- W2912803559 cites W2098268836 @default.
- W2912803559 cites W2483430316 @default.
- W2912803559 cites W2538303219 @default.
- W2912803559 cites W4244781008 @default.
- W2912803559 cites W435774925 @default.
- W2912803559 cites W619926346 @default.
- W2912803559 doi "https://doi.org/10.1109/bigdata.2018.8622063" @default.
- W2912803559 hasPublicationYear "2018" @default.
- W2912803559 type Work @default.
- W2912803559 sameAs 2912803559 @default.
- W2912803559 citedByCount "4" @default.
- W2912803559 countsByYear W29128035592019 @default.
- W2912803559 countsByYear W29128035592020 @default.
- W2912803559 countsByYear W29128035592022 @default.
- W2912803559 crossrefType "proceedings-article" @default.
- W2912803559 hasAuthorship W2912803559A5026547820 @default.
- W2912803559 hasAuthorship W2912803559A5087753797 @default.
- W2912803559 hasConcept C108010975 @default.
- W2912803559 hasConcept C113174947 @default.
- W2912803559 hasConcept C113954288 @default.
- W2912803559 hasConcept C119857082 @default.
- W2912803559 hasConcept C124101348 @default.
- W2912803559 hasConcept C134306372 @default.
- W2912803559 hasConcept C151406439 @default.
- W2912803559 hasConcept C162319229 @default.
- W2912803559 hasConcept C199360897 @default.
- W2912803559 hasConcept C2781166958 @default.
- W2912803559 hasConcept C33923547 @default.
- W2912803559 hasConcept C38652104 @default.
- W2912803559 hasConcept C41008148 @default.
- W2912803559 hasConcept C6557445 @default.
- W2912803559 hasConcept C75684735 @default.
- W2912803559 hasConcept C86803240 @default.
- W2912803559 hasConceptScore W2912803559C108010975 @default.
- W2912803559 hasConceptScore W2912803559C113174947 @default.
- W2912803559 hasConceptScore W2912803559C113954288 @default.
- W2912803559 hasConceptScore W2912803559C119857082 @default.
- W2912803559 hasConceptScore W2912803559C124101348 @default.
- W2912803559 hasConceptScore W2912803559C134306372 @default.
- W2912803559 hasConceptScore W2912803559C151406439 @default.
- W2912803559 hasConceptScore W2912803559C162319229 @default.
- W2912803559 hasConceptScore W2912803559C199360897 @default.
- W2912803559 hasConceptScore W2912803559C2781166958 @default.
- W2912803559 hasConceptScore W2912803559C33923547 @default.
- W2912803559 hasConceptScore W2912803559C38652104 @default.
- W2912803559 hasConceptScore W2912803559C41008148 @default.
- W2912803559 hasConceptScore W2912803559C6557445 @default.
- W2912803559 hasConceptScore W2912803559C75684735 @default.
- W2912803559 hasConceptScore W2912803559C86803240 @default.
- W2912803559 hasLocation W29128035591 @default.
- W2912803559 hasOpenAccess W2912803559 @default.
- W2912803559 hasPrimaryLocation W29128035591 @default.
- W2912803559 hasRelatedWork W2006787297 @default.
- W2912803559 hasRelatedWork W2017494415 @default.
- W2912803559 hasRelatedWork W2141014803 @default.
- W2912803559 hasRelatedWork W2171446221 @default.
- W2912803559 hasRelatedWork W2251030740 @default.
- W2912803559 hasRelatedWork W2363307868 @default.
- W2912803559 hasRelatedWork W2557672350 @default.
- W2912803559 hasRelatedWork W2586811226 @default.
- W2912803559 hasRelatedWork W4311761935 @default.
- W2912803559 hasRelatedWork W435774925 @default.
- W2912803559 isParatext "false" @default.
- W2912803559 isRetracted "false" @default.
- W2912803559 magId "2912803559" @default.
- W2912803559 workType "article" @default.