Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912804187> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2912804187 endingPage "151" @default.
- W2912804187 startingPage "138" @default.
- W2912804187 abstract "• Computational resources are used efficiently through combination of subset simulations and Gaussian process emulation. • Multimodal failure domains are efficiently handled with the use of clustering techniques. • The selection of new points, duration of learning and emulator quality are controlled adaptively. • The algorithm is readily extensible for use in standard and reliability-based design optimisation . This paper presents an approximation method for performing efficient reliability analysis with complex computer models. The computational cost of industrial-scale models can cause problems when performing sampling-based reliability analysis. This is due to the fact that the failure modes of the system typically occupy a small region of the performance space and thus require relatively large sample sizes to accurately estimate their characteristics. The sequential sampling method proposed in this article, combines Gaussian process-based optimisation and subset simulation . Gaussian process emulators construct a statistical approximation to the output of the original code, which is both affordable to use and has its own measure of predictive uncertainty. Subset simulation is used as an integral part of the algorithm to efficiently populate those regions of the surrogate which are likely to lead to the performance function exceeding a predefined critical threshold. The emulator itself is used to inform decisions about efficiently using the original code to augment its predictions. The iterative nature of the method ensures that an arbitrarily accurate approximation of the failure region is developed at a reasonable computational cost. The presented method is applied to an industrial model of a biodiesel filter." @default.
- W2912804187 created "2019-02-21" @default.
- W2912804187 creator A5029957849 @default.
- W2912804187 creator A5042443465 @default.
- W2912804187 creator A5056273964 @default.
- W2912804187 creator A5068284392 @default.
- W2912804187 date "2019-07-01" @default.
- W2912804187 modified "2023-09-26" @default.
- W2912804187 title "Adaptive Gaussian process emulators for efficient reliability analysis" @default.
- W2912804187 cites W1510052597 @default.
- W2912804187 cites W1609705025 @default.
- W2912804187 cites W1981347877 @default.
- W2912804187 cites W1984753492 @default.
- W2912804187 cites W1984912548 @default.
- W2912804187 cites W1991788899 @default.
- W2912804187 cites W1999091229 @default.
- W2912804187 cites W2007535697 @default.
- W2912804187 cites W2014220254 @default.
- W2912804187 cites W2028738140 @default.
- W2912804187 cites W2043653481 @default.
- W2912804187 cites W2048711666 @default.
- W2912804187 cites W2061507537 @default.
- W2912804187 cites W2078035571 @default.
- W2912804187 cites W2085288813 @default.
- W2912804187 cites W2089011531 @default.
- W2912804187 cites W2092127669 @default.
- W2912804187 cites W2096285034 @default.
- W2912804187 cites W2098720801 @default.
- W2912804187 cites W2125107816 @default.
- W2912804187 cites W2133118715 @default.
- W2912804187 cites W2236331705 @default.
- W2912804187 cites W2297254173 @default.
- W2912804187 cites W2345643602 @default.
- W2912804187 cites W2483957145 @default.
- W2912804187 cites W2520879866 @default.
- W2912804187 cites W2962998905 @default.
- W2912804187 cites W3126133291 @default.
- W2912804187 doi "https://doi.org/10.1016/j.apm.2019.02.014" @default.
- W2912804187 hasPublicationYear "2019" @default.
- W2912804187 type Work @default.
- W2912804187 sameAs 2912804187 @default.
- W2912804187 citedByCount "10" @default.
- W2912804187 countsByYear W29128041872020 @default.
- W2912804187 countsByYear W29128041872021 @default.
- W2912804187 countsByYear W29128041872022 @default.
- W2912804187 countsByYear W29128041872023 @default.
- W2912804187 crossrefType "journal-article" @default.
- W2912804187 hasAuthorship W2912804187A5029957849 @default.
- W2912804187 hasAuthorship W2912804187A5042443465 @default.
- W2912804187 hasAuthorship W2912804187A5056273964 @default.
- W2912804187 hasAuthorship W2912804187A5068284392 @default.
- W2912804187 hasBestOaLocation W29128041871 @default.
- W2912804187 hasConcept C111919701 @default.
- W2912804187 hasConcept C121332964 @default.
- W2912804187 hasConcept C121864883 @default.
- W2912804187 hasConcept C127413603 @default.
- W2912804187 hasConcept C163258240 @default.
- W2912804187 hasConcept C163716315 @default.
- W2912804187 hasConcept C200601418 @default.
- W2912804187 hasConcept C41008148 @default.
- W2912804187 hasConcept C43214815 @default.
- W2912804187 hasConcept C61326573 @default.
- W2912804187 hasConcept C62520636 @default.
- W2912804187 hasConcept C98045186 @default.
- W2912804187 hasConceptScore W2912804187C111919701 @default.
- W2912804187 hasConceptScore W2912804187C121332964 @default.
- W2912804187 hasConceptScore W2912804187C121864883 @default.
- W2912804187 hasConceptScore W2912804187C127413603 @default.
- W2912804187 hasConceptScore W2912804187C163258240 @default.
- W2912804187 hasConceptScore W2912804187C163716315 @default.
- W2912804187 hasConceptScore W2912804187C200601418 @default.
- W2912804187 hasConceptScore W2912804187C41008148 @default.
- W2912804187 hasConceptScore W2912804187C43214815 @default.
- W2912804187 hasConceptScore W2912804187C61326573 @default.
- W2912804187 hasConceptScore W2912804187C62520636 @default.
- W2912804187 hasConceptScore W2912804187C98045186 @default.
- W2912804187 hasFunder F4320334627 @default.
- W2912804187 hasLocation W29128041871 @default.
- W2912804187 hasLocation W29128041872 @default.
- W2912804187 hasOpenAccess W2912804187 @default.
- W2912804187 hasPrimaryLocation W29128041871 @default.
- W2912804187 hasRelatedWork W2015799581 @default.
- W2912804187 hasRelatedWork W2019501673 @default.
- W2912804187 hasRelatedWork W2033512842 @default.
- W2912804187 hasRelatedWork W2054503408 @default.
- W2912804187 hasRelatedWork W2063038022 @default.
- W2912804187 hasRelatedWork W2374792105 @default.
- W2912804187 hasRelatedWork W2374901194 @default.
- W2912804187 hasRelatedWork W2764722704 @default.
- W2912804187 hasRelatedWork W3147033875 @default.
- W2912804187 hasRelatedWork W2066470178 @default.
- W2912804187 hasVolume "71" @default.
- W2912804187 isParatext "false" @default.
- W2912804187 isRetracted "false" @default.
- W2912804187 magId "2912804187" @default.
- W2912804187 workType "article" @default.