Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912808596> ?p ?o ?g. }
- W2912808596 abstract "Abstract Aerial imagery is regularly used by farmers and growers to monitor crops during the growing season. To extract meaningful phenotypic information from large-scale aerial images collected regularly from the field, high-throughput analytic solutions are required, which not only produce high-quality measures of key crop traits, but also support agricultural practitioners to make reliable management decisions of their crops. Here, we report AirSurf- Lettuce , an automated and open-source aerial image analysis platform that combines modern computer vision, up-to-date machine learning, and modular software engineering to measure yield-related phenotypes of millions of lettuces across the field. Utilising ultra-large normalized difference vegetation index (NDVI) images acquired by fixed-wing light aircrafts together with a deep-learning classifier trained with over 100,000 labelled lettuce signals, the platform is capable of scoring and categorising iceberg lettuces with high accuracy (>98%). Furthermore, novel analysis functions have been developed to map lettuce size distribution in the field, based on which global positioning system (GPS) tagged harvest regions can be derived to enable growers and farmers’ precise harvest strategies and marketability estimates before the harvest." @default.
- W2912808596 created "2019-02-21" @default.
- W2912808596 creator A5006852120 @default.
- W2912808596 creator A5034630608 @default.
- W2912808596 creator A5037841949 @default.
- W2912808596 creator A5042179693 @default.
- W2912808596 creator A5052459001 @default.
- W2912808596 creator A5065410322 @default.
- W2912808596 creator A5078672098 @default.
- W2912808596 creator A5079077607 @default.
- W2912808596 creator A5085340045 @default.
- W2912808596 date "2019-01-23" @default.
- W2912808596 modified "2023-09-26" @default.
- W2912808596 title "AirSurf-<i>Lettuce</i>: an aerial image analysis platform for ultra-scale field phenotyping and precision agriculture using computer vision and deep learning" @default.
- W2912808596 cites W1505191356 @default.
- W2912808596 cites W1965092590 @default.
- W2912808596 cites W1970716860 @default.
- W2912808596 cites W1973514305 @default.
- W2912808596 cites W1976468890 @default.
- W2912808596 cites W1986623598 @default.
- W2912808596 cites W1988682309 @default.
- W2912808596 cites W1995736008 @default.
- W2912808596 cites W1998740231 @default.
- W2912808596 cites W2011301426 @default.
- W2912808596 cites W2025238960 @default.
- W2912808596 cites W2032510388 @default.
- W2912808596 cites W2037802158 @default.
- W2912808596 cites W2046779692 @default.
- W2912808596 cites W2068253265 @default.
- W2912808596 cites W2079857949 @default.
- W2912808596 cites W2086330580 @default.
- W2912808596 cites W2111619626 @default.
- W2912808596 cites W2126019935 @default.
- W2912808596 cites W2136596038 @default.
- W2912808596 cites W2148595611 @default.
- W2912808596 cites W2169418131 @default.
- W2912808596 cites W2182309167 @default.
- W2912808596 cites W2182758793 @default.
- W2912808596 cites W2185489349 @default.
- W2912808596 cites W2186782372 @default.
- W2912808596 cites W2339790010 @default.
- W2912808596 cites W2342700912 @default.
- W2912808596 cites W2502949459 @default.
- W2912808596 cites W2509889019 @default.
- W2912808596 cites W2533800772 @default.
- W2912808596 cites W2541344361 @default.
- W2912808596 cites W2573000119 @default.
- W2912808596 cites W2586871584 @default.
- W2912808596 cites W2605025138 @default.
- W2912808596 cites W2743464688 @default.
- W2912808596 cites W2762441582 @default.
- W2912808596 cites W2768498859 @default.
- W2912808596 cites W2775445927 @default.
- W2912808596 cites W2883640548 @default.
- W2912808596 cites W2951897480 @default.
- W2912808596 cites W4289843304 @default.
- W2912808596 cites W4300009529 @default.
- W2912808596 doi "https://doi.org/10.1101/527184" @default.
- W2912808596 hasPublicationYear "2019" @default.
- W2912808596 type Work @default.
- W2912808596 sameAs 2912808596 @default.
- W2912808596 citedByCount "1" @default.
- W2912808596 countsByYear W29128085962021 @default.
- W2912808596 crossrefType "posted-content" @default.
- W2912808596 hasAuthorship W2912808596A5006852120 @default.
- W2912808596 hasAuthorship W2912808596A5034630608 @default.
- W2912808596 hasAuthorship W2912808596A5037841949 @default.
- W2912808596 hasAuthorship W2912808596A5042179693 @default.
- W2912808596 hasAuthorship W2912808596A5052459001 @default.
- W2912808596 hasAuthorship W2912808596A5065410322 @default.
- W2912808596 hasAuthorship W2912808596A5078672098 @default.
- W2912808596 hasAuthorship W2912808596A5079077607 @default.
- W2912808596 hasAuthorship W2912808596A5085340045 @default.
- W2912808596 hasBestOaLocation W29128085961 @default.
- W2912808596 hasConcept C108583219 @default.
- W2912808596 hasConcept C118518473 @default.
- W2912808596 hasConcept C120217122 @default.
- W2912808596 hasConcept C127413603 @default.
- W2912808596 hasConcept C1549246 @default.
- W2912808596 hasConcept C154945302 @default.
- W2912808596 hasConcept C166957645 @default.
- W2912808596 hasConcept C199360897 @default.
- W2912808596 hasConcept C202444582 @default.
- W2912808596 hasConcept C205649164 @default.
- W2912808596 hasConcept C25989453 @default.
- W2912808596 hasConcept C2777904410 @default.
- W2912808596 hasConcept C2778755073 @default.
- W2912808596 hasConcept C33923547 @default.
- W2912808596 hasConcept C41008148 @default.
- W2912808596 hasConcept C58640448 @default.
- W2912808596 hasConcept C60229501 @default.
- W2912808596 hasConcept C62649853 @default.
- W2912808596 hasConcept C6557445 @default.
- W2912808596 hasConcept C76155785 @default.
- W2912808596 hasConcept C86803240 @default.
- W2912808596 hasConcept C88463610 @default.
- W2912808596 hasConcept C95623464 @default.
- W2912808596 hasConcept C9652623 @default.
- W2912808596 hasConceptScore W2912808596C108583219 @default.
- W2912808596 hasConceptScore W2912808596C118518473 @default.