Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912826091> ?p ?o ?g. }
- W2912826091 endingPage "5207" @default.
- W2912826091 startingPage "5198" @default.
- W2912826091 abstract "The base excision repair (BER) pathway is an important DNA repair pathway and is essential for immune responses. In fact, it regulates both the antigen-stimulated somatic hypermutation (SHM) process and plays a central function in the process of class switch recombination (CSR). For both processes, a central role for apurinic/apyrimidinic endonuclease 1 (APE1) has been demonstrated. APE1 acts also as a master regulator of gene expression through its redox activity. APE1’s redox activity stimulates the DNA-binding activity of several transcription factors, including NF-κB and a few others involved in inflammation and in immune responses. Therefore, it is possible that APE1 has a role in regulating the CSR through its function as a redox coactivator. The present study was undertaken to address this question. Using the CSR-competent mouse B-cell line CH12F3 and a combination of specific inhibitors of APE1’s redox (APX3330) and repair (compound 3) activities, APE1-deficient or -reconstituted cell lines expressing redox-deficient or endonuclease-deficient proteins, and APX3330-treated mice, we determined the contributions of both endonuclease and redox functions of APE1 in CSR. We found that APE1’s endonuclease activity is essential for IgA-class switch recombination. We provide evidence that the redox function of APE1 appears to play a role in regulating CSR through the interleukin-6 signaling pathway and in proper IgA expression. Our results shed light on APE1’s redox function in the control of cancer growth through modulation of the IgA CSR process. The base excision repair (BER) pathway is an important DNA repair pathway and is essential for immune responses. In fact, it regulates both the antigen-stimulated somatic hypermutation (SHM) process and plays a central function in the process of class switch recombination (CSR). For both processes, a central role for apurinic/apyrimidinic endonuclease 1 (APE1) has been demonstrated. APE1 acts also as a master regulator of gene expression through its redox activity. APE1’s redox activity stimulates the DNA-binding activity of several transcription factors, including NF-κB and a few others involved in inflammation and in immune responses. Therefore, it is possible that APE1 has a role in regulating the CSR through its function as a redox coactivator. The present study was undertaken to address this question. Using the CSR-competent mouse B-cell line CH12F3 and a combination of specific inhibitors of APE1’s redox (APX3330) and repair (compound 3) activities, APE1-deficient or -reconstituted cell lines expressing redox-deficient or endonuclease-deficient proteins, and APX3330-treated mice, we determined the contributions of both endonuclease and redox functions of APE1 in CSR. We found that APE1’s endonuclease activity is essential for IgA-class switch recombination. We provide evidence that the redox function of APE1 appears to play a role in regulating CSR through the interleukin-6 signaling pathway and in proper IgA expression. Our results shed light on APE1’s redox function in the control of cancer growth through modulation of the IgA CSR process." @default.
- W2912826091 created "2019-02-21" @default.
- W2912826091 creator A5012769957 @default.
- W2912826091 creator A5025839745 @default.
- W2912826091 creator A5030785720 @default.
- W2912826091 creator A5037021649 @default.
- W2912826091 creator A5037840616 @default.
- W2912826091 creator A5055737445 @default.
- W2912826091 creator A5062363713 @default.
- W2912826091 creator A5091242119 @default.
- W2912826091 date "2019-03-01" @default.
- W2912826091 modified "2023-10-18" @default.
- W2912826091 title "Endonuclease and redox activities of human apurinic/apyrimidinic endonuclease 1 have distinctive and essential functions in IgA class switch recombination" @default.
- W2912826091 cites W1686806898 @default.
- W2912826091 cites W1832442421 @default.
- W2912826091 cites W1917885463 @default.
- W2912826091 cites W1966033046 @default.
- W2912826091 cites W1972977694 @default.
- W2912826091 cites W1980228623 @default.
- W2912826091 cites W1984983736 @default.
- W2912826091 cites W1995414938 @default.
- W2912826091 cites W1999449262 @default.
- W2912826091 cites W2013686837 @default.
- W2912826091 cites W2016844537 @default.
- W2912826091 cites W2017957514 @default.
- W2912826091 cites W2019954113 @default.
- W2912826091 cites W2020675286 @default.
- W2912826091 cites W2028119988 @default.
- W2912826091 cites W2030990584 @default.
- W2912826091 cites W2052908721 @default.
- W2912826091 cites W2055952174 @default.
- W2912826091 cites W2081888691 @default.
- W2912826091 cites W2086473596 @default.
- W2912826091 cites W2089735518 @default.
- W2912826091 cites W2095662446 @default.
- W2912826091 cites W2101226302 @default.
- W2912826091 cites W2108108445 @default.
- W2912826091 cites W2120041375 @default.
- W2912826091 cites W2141434157 @default.
- W2912826091 cites W2154841949 @default.
- W2912826091 cites W2164254264 @default.
- W2912826091 cites W2165378960 @default.
- W2912826091 cites W2165474231 @default.
- W2912826091 cites W2165789547 @default.
- W2912826091 cites W2269890855 @default.
- W2912826091 cites W2507442738 @default.
- W2912826091 cites W2514088651 @default.
- W2912826091 cites W2514093340 @default.
- W2912826091 cites W2739031520 @default.
- W2912826091 cites W2761216404 @default.
- W2912826091 cites W2804918481 @default.
- W2912826091 cites W4230022472 @default.
- W2912826091 cites W594331189 @default.
- W2912826091 doi "https://doi.org/10.1074/jbc.ra118.006601" @default.
- W2912826091 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6442068" @default.
- W2912826091 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30705092" @default.
- W2912826091 hasPublicationYear "2019" @default.
- W2912826091 type Work @default.
- W2912826091 sameAs 2912826091 @default.
- W2912826091 citedByCount "14" @default.
- W2912826091 countsByYear W29128260912019 @default.
- W2912826091 countsByYear W29128260912020 @default.
- W2912826091 countsByYear W29128260912021 @default.
- W2912826091 countsByYear W29128260912022 @default.
- W2912826091 countsByYear W29128260912023 @default.
- W2912826091 crossrefType "journal-article" @default.
- W2912826091 hasAuthorship W2912826091A5012769957 @default.
- W2912826091 hasAuthorship W2912826091A5025839745 @default.
- W2912826091 hasAuthorship W2912826091A5030785720 @default.
- W2912826091 hasAuthorship W2912826091A5037021649 @default.
- W2912826091 hasAuthorship W2912826091A5037840616 @default.
- W2912826091 hasAuthorship W2912826091A5055737445 @default.
- W2912826091 hasAuthorship W2912826091A5062363713 @default.
- W2912826091 hasAuthorship W2912826091A5091242119 @default.
- W2912826091 hasBestOaLocation W29128260911 @default.
- W2912826091 hasConcept C1009745 @default.
- W2912826091 hasConcept C104317684 @default.
- W2912826091 hasConcept C128526571 @default.
- W2912826091 hasConcept C134935766 @default.
- W2912826091 hasConcept C150777479 @default.
- W2912826091 hasConcept C153911025 @default.
- W2912826091 hasConcept C159654299 @default.
- W2912826091 hasConcept C187206112 @default.
- W2912826091 hasConcept C2776435897 @default.
- W2912826091 hasConcept C2777028655 @default.
- W2912826091 hasConcept C2778453870 @default.
- W2912826091 hasConcept C54355233 @default.
- W2912826091 hasConcept C86803240 @default.
- W2912826091 hasConcept C95444343 @default.
- W2912826091 hasConceptScore W2912826091C1009745 @default.
- W2912826091 hasConceptScore W2912826091C104317684 @default.
- W2912826091 hasConceptScore W2912826091C128526571 @default.
- W2912826091 hasConceptScore W2912826091C134935766 @default.
- W2912826091 hasConceptScore W2912826091C150777479 @default.
- W2912826091 hasConceptScore W2912826091C153911025 @default.
- W2912826091 hasConceptScore W2912826091C159654299 @default.
- W2912826091 hasConceptScore W2912826091C187206112 @default.
- W2912826091 hasConceptScore W2912826091C2776435897 @default.