Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912862036> ?p ?o ?g. }
- W2912862036 endingPage "122" @default.
- W2912862036 startingPage "114" @default.
- W2912862036 abstract "The Active Magnetic Regenerator (AMR) cycle can liquefy cryogens with high efficiency, however the system economics have not been investigated. The computational complexity of AMR modeling tools has limited the parameter space of numerical investigations, and the correlations between the cryocooler and cryogen cost have yet to be resolved. To address these issues, we present a system-level cost optimization of a magnetic liquefier with a Rare-Earth Barium Copper Oxide (ReBCO) high temperature superconducting (HTS) magnet. Using the semi-analytic AMR element model, the capital and operating costs of the cryocooler, superconducting tape and AMR system are optimized in a nested genetic-differential evolution algorithm and explored as a function of the cryocooler temperature. It is shown that a 20 K HTS magnet is several times cheaper than its 70 K counterpart, and in the optimized system, the cost to liquefy natural gas approaches 0.24 $/kg with a 3.57 tonne-per-day capacity and a plant cost of $350,000." @default.
- W2912862036 created "2019-02-21" @default.
- W2912862036 creator A5033603824 @default.
- W2912862036 creator A5034851211 @default.
- W2912862036 date "2019-04-01" @default.
- W2912862036 modified "2023-09-29" @default.
- W2912862036 title "Superconducting magnet design for magnetic liquefiers using total cost minimization" @default.
- W2912862036 cites W1428386155 @default.
- W2912862036 cites W1621230895 @default.
- W2912862036 cites W1654833160 @default.
- W2912862036 cites W1883697231 @default.
- W2912862036 cites W1980113301 @default.
- W2912862036 cites W2006368349 @default.
- W2912862036 cites W2017289539 @default.
- W2912862036 cites W2022837498 @default.
- W2912862036 cites W2027666999 @default.
- W2912862036 cites W2035220088 @default.
- W2912862036 cites W2039001468 @default.
- W2912862036 cites W2049108474 @default.
- W2912862036 cites W2050221246 @default.
- W2912862036 cites W2064915471 @default.
- W2912862036 cites W2065796465 @default.
- W2912862036 cites W2065874356 @default.
- W2912862036 cites W2066123284 @default.
- W2912862036 cites W2081416138 @default.
- W2912862036 cites W2082173124 @default.
- W2912862036 cites W2099048383 @default.
- W2912862036 cites W2105882406 @default.
- W2912862036 cites W2110114082 @default.
- W2912862036 cites W2112314877 @default.
- W2912862036 cites W2117707943 @default.
- W2912862036 cites W2120013598 @default.
- W2912862036 cites W2150674927 @default.
- W2912862036 cites W2292227577 @default.
- W2912862036 cites W2323359613 @default.
- W2912862036 cites W2325084490 @default.
- W2912862036 cites W2341627437 @default.
- W2912862036 cites W2472296000 @default.
- W2912862036 cites W2498665437 @default.
- W2912862036 cites W2579756017 @default.
- W2912862036 cites W2622823116 @default.
- W2912862036 cites W2756386583 @default.
- W2912862036 cites W2765824490 @default.
- W2912862036 cites W2793776795 @default.
- W2912862036 cites W2798088017 @default.
- W2912862036 cites W2905338853 @default.
- W2912862036 cites W4254649837 @default.
- W2912862036 cites W2767546677 @default.
- W2912862036 doi "https://doi.org/10.1016/j.cryogenics.2019.02.002" @default.
- W2912862036 hasPublicationYear "2019" @default.
- W2912862036 type Work @default.
- W2912862036 sameAs 2912862036 @default.
- W2912862036 citedByCount "3" @default.
- W2912862036 countsByYear W29128620362020 @default.
- W2912862036 countsByYear W29128620362021 @default.
- W2912862036 crossrefType "journal-article" @default.
- W2912862036 hasAuthorship W2912862036A5033603824 @default.
- W2912862036 hasAuthorship W2912862036A5034851211 @default.
- W2912862036 hasBestOaLocation W29128620361 @default.
- W2912862036 hasConcept C107706546 @default.
- W2912862036 hasConcept C116915560 @default.
- W2912862036 hasConcept C121332964 @default.
- W2912862036 hasConcept C127413603 @default.
- W2912862036 hasConcept C16389437 @default.
- W2912862036 hasConcept C172108966 @default.
- W2912862036 hasConcept C179725390 @default.
- W2912862036 hasConcept C192562407 @default.
- W2912862036 hasConcept C26873012 @default.
- W2912862036 hasConcept C41008148 @default.
- W2912862036 hasConcept C4846943 @default.
- W2912862036 hasConcept C54101563 @default.
- W2912862036 hasConcept C54999516 @default.
- W2912862036 hasConcept C63257944 @default.
- W2912862036 hasConcept C78519656 @default.
- W2912862036 hasConcept C97355855 @default.
- W2912862036 hasConceptScore W2912862036C107706546 @default.
- W2912862036 hasConceptScore W2912862036C116915560 @default.
- W2912862036 hasConceptScore W2912862036C121332964 @default.
- W2912862036 hasConceptScore W2912862036C127413603 @default.
- W2912862036 hasConceptScore W2912862036C16389437 @default.
- W2912862036 hasConceptScore W2912862036C172108966 @default.
- W2912862036 hasConceptScore W2912862036C179725390 @default.
- W2912862036 hasConceptScore W2912862036C192562407 @default.
- W2912862036 hasConceptScore W2912862036C26873012 @default.
- W2912862036 hasConceptScore W2912862036C41008148 @default.
- W2912862036 hasConceptScore W2912862036C4846943 @default.
- W2912862036 hasConceptScore W2912862036C54101563 @default.
- W2912862036 hasConceptScore W2912862036C54999516 @default.
- W2912862036 hasConceptScore W2912862036C63257944 @default.
- W2912862036 hasConceptScore W2912862036C78519656 @default.
- W2912862036 hasConceptScore W2912862036C97355855 @default.
- W2912862036 hasFunder F4320334593 @default.
- W2912862036 hasLocation W29128620361 @default.
- W2912862036 hasOpenAccess W2912862036 @default.
- W2912862036 hasPrimaryLocation W29128620361 @default.
- W2912862036 hasRelatedWork W2019476833 @default.
- W2912862036 hasRelatedWork W2081650339 @default.
- W2912862036 hasRelatedWork W2116055324 @default.