Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912872638> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2912872638 abstract "Abstract Motivation Cancer is a major cause of death worldwide, and an early diagnosis is required for a favorable prognosis. Histological examination is the gold standard for cancer identification; however, there is a large amount of inter-observer variability in histological diagnosis. Numerous studies have shown that cancer genesis is accompanied by an accumulation of harmful mutations within patients’ genome, potentiating the identification of cancer based on genomic information. We have proposed a method, GDL (genome deep learning), to study the relationship between genomic variations and traits based on deep neural networks with multiple hidden layers and nonlinear transformations. Result We analyzed 6,083 samples from 12 cancer types obtained from the TCGA (The Cancer Genome Atlas) and 1,991 healthy samples from the 1000 Genomes project(Genomes Project, et al., 2010). We constructed 12 specific models to distinguish between certain types of cancers and healthy tissues, a specific model that can identify healthy vs diseased tissues, and a mixture model to distinguish between all 12 types of cancer based on GDL. We present the success obtained with GDL when applied to the challenging problem of cancer based on genomic variations and demonstrate state-of-the-art results (97%, 70.08% and 94.70%) for cancer identification. The mixture model achieved a comparable performance. With the development of new molecular and sequencing technologies, we can now collect circulating tumor DNA (ctDNA) from blood and monitor the cancer risk in real time, and using our model, we can also target cancerous tissue that may develop in the future. We developed a new and efficient method for the identification of cancer based on genomic information that offers a new direction for disease diagnosis while providing a new method to predict traits based on that information. Contact: chenwenbin@genomics.cn" @default.
- W2912872638 created "2019-02-21" @default.
- W2912872638 creator A5004566731 @default.
- W2912872638 creator A5018342513 @default.
- W2912872638 creator A5022822921 @default.
- W2912872638 creator A5037100270 @default.
- W2912872638 creator A5045712324 @default.
- W2912872638 creator A5067929675 @default.
- W2912872638 creator A5078526925 @default.
- W2912872638 creator A5078745386 @default.
- W2912872638 date "2019-01-24" @default.
- W2912872638 modified "2023-09-23" @default.
- W2912872638 title "Identification of 12 cancer types through genome deep learning" @default.
- W2912872638 cites W1498436455 @default.
- W2912872638 cites W1505191356 @default.
- W2912872638 cites W1883773314 @default.
- W2912872638 cites W2043292259 @default.
- W2912872638 cites W2047477230 @default.
- W2912872638 cites W2056104146 @default.
- W2912872638 cites W2059390353 @default.
- W2912872638 cites W2072445382 @default.
- W2912872638 cites W2076063813 @default.
- W2912872638 cites W2103441770 @default.
- W2912872638 cites W2109936378 @default.
- W2912872638 cites W2117539524 @default.
- W2912872638 cites W2119180969 @default.
- W2912872638 cites W2127471603 @default.
- W2912872638 cites W2129769331 @default.
- W2912872638 cites W2138601221 @default.
- W2912872638 cites W2151420891 @default.
- W2912872638 cites W2171777347 @default.
- W2912872638 cites W2217809488 @default.
- W2912872638 cites W2257979135 @default.
- W2912872638 cites W2261527505 @default.
- W2912872638 cites W2581082771 @default.
- W2912872638 cites W2605025138 @default.
- W2912872638 cites W2766352633 @default.
- W2912872638 cites W2781525129 @default.
- W2912872638 cites W2790522032 @default.
- W2912872638 cites W2795941120 @default.
- W2912872638 cites W2810592374 @default.
- W2912872638 cites W2919115771 @default.
- W2912872638 cites W2951203227 @default.
- W2912872638 cites W3101584733 @default.
- W2912872638 doi "https://doi.org/10.1101/528216" @default.
- W2912872638 hasPublicationYear "2019" @default.
- W2912872638 type Work @default.
- W2912872638 sameAs 2912872638 @default.
- W2912872638 citedByCount "0" @default.
- W2912872638 crossrefType "posted-content" @default.
- W2912872638 hasAuthorship W2912872638A5004566731 @default.
- W2912872638 hasAuthorship W2912872638A5018342513 @default.
- W2912872638 hasAuthorship W2912872638A5022822921 @default.
- W2912872638 hasAuthorship W2912872638A5037100270 @default.
- W2912872638 hasAuthorship W2912872638A5045712324 @default.
- W2912872638 hasAuthorship W2912872638A5067929675 @default.
- W2912872638 hasAuthorship W2912872638A5078526925 @default.
- W2912872638 hasAuthorship W2912872638A5078745386 @default.
- W2912872638 hasBestOaLocation W29128726381 @default.
- W2912872638 hasConcept C104317684 @default.
- W2912872638 hasConcept C116834253 @default.
- W2912872638 hasConcept C121608353 @default.
- W2912872638 hasConcept C141231307 @default.
- W2912872638 hasConcept C51679486 @default.
- W2912872638 hasConcept C54355233 @default.
- W2912872638 hasConcept C59822182 @default.
- W2912872638 hasConcept C70721500 @default.
- W2912872638 hasConcept C86803240 @default.
- W2912872638 hasConceptScore W2912872638C104317684 @default.
- W2912872638 hasConceptScore W2912872638C116834253 @default.
- W2912872638 hasConceptScore W2912872638C121608353 @default.
- W2912872638 hasConceptScore W2912872638C141231307 @default.
- W2912872638 hasConceptScore W2912872638C51679486 @default.
- W2912872638 hasConceptScore W2912872638C54355233 @default.
- W2912872638 hasConceptScore W2912872638C59822182 @default.
- W2912872638 hasConceptScore W2912872638C70721500 @default.
- W2912872638 hasConceptScore W2912872638C86803240 @default.
- W2912872638 hasLocation W29128726381 @default.
- W2912872638 hasLocation W29128726382 @default.
- W2912872638 hasOpenAccess W2912872638 @default.
- W2912872638 hasPrimaryLocation W29128726381 @default.
- W2912872638 hasRelatedWork W1511158074 @default.
- W2912872638 hasRelatedWork W1548077716 @default.
- W2912872638 hasRelatedWork W1978367915 @default.
- W2912872638 hasRelatedWork W2033991106 @default.
- W2912872638 hasRelatedWork W2113819367 @default.
- W2912872638 hasRelatedWork W2158685423 @default.
- W2912872638 hasRelatedWork W2264926813 @default.
- W2912872638 hasRelatedWork W2912872638 @default.
- W2912872638 hasRelatedWork W4240854064 @default.
- W2912872638 hasRelatedWork W4287594971 @default.
- W2912872638 isParatext "false" @default.
- W2912872638 isRetracted "false" @default.
- W2912872638 magId "2912872638" @default.
- W2912872638 workType "article" @default.