Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912877569> ?p ?o ?g. }
- W2912877569 abstract "Abstract Individual differences of classification performance remain a crucial problem in electroencephalography (EEG)-based motor imagery brain computer interface (MIBCI). Independent component analysis (ICA) is a promising spatial filtering technique in BCI system for it requires few and unlabeled training samples for calibration of the BCI system. However, both the distribution of scalp electrodes and the quality of training data are critical factors of influencing the classification performance of ICA-BCI applications. In this study, a new channel selection algorithm was proposed for automatically choosing subject-specific minimal electrode subsets that can obtain high classification accuracies of the ICA-BCI system. The algorithm consisted of two steps: selection of “main electrodes” located on the motor cortex, and subsequent searching of “subordinate electrodes”, which were picked out one by one from the left electrodes until the maximum accuracy was achieved. Meanwhile, a single_trial_based_self_testing (STST) method, utilizing one single trial to train ICA spatial filters which were only applied in the identical trial for extracting motor-related independent components (MRICs), was proposed to eliminate the influence of bad trials. The channel selection algorithm was applied in 72 runs of three-class motor imagery EEG datasets for twelve BCI users. Experimental results indicated that the classification accuracies using the optimal channels were significantly higher than that of standard 8 and 9 channels. Meanwhile, ICA algorithm with optimal channel subset had comparable performance with Common spatial patterns (CSP) algorithm in self-testing and run-to-run cross validation, and ICA significantly outperformed CSP in session-to-session and subject-to-subject transfer. Although the numbers and locations of optimal channels were different between sessions and subjects, the main electrodes were basically same between different runs for long-term BCI users. Furthermore, the optimal electrodes were primarily located on the motor cortex of parietal lobe area and the frontal lobe area, few located in the occipital lobe area. Too many or too few channels were not suitable for ICA calculation, and usually, using 5–8 channels of EEG data could achieve better classification performance. These findings may offer a reference for the optimization of ICA-based BCI systems, and further improve the performance and stability of MI-BCI system." @default.
- W2912877569 created "2019-02-21" @default.
- W2912877569 creator A5026466982 @default.
- W2912877569 creator A5058510872 @default.
- W2912877569 creator A5066382998 @default.
- W2912877569 creator A5080687525 @default.
- W2912877569 creator A5080798381 @default.
- W2912877569 date "2019-04-01" @default.
- W2912877569 modified "2023-10-11" @default.
- W2912877569 title "How many channels are suitable for independent component analysis in motor imagery brain-computer interface" @default.
- W2912877569 cites W1610928686 @default.
- W2912877569 cites W1945080131 @default.
- W2912877569 cites W1964324599 @default.
- W2912877569 cites W1970070014 @default.
- W2912877569 cites W1971274817 @default.
- W2912877569 cites W1974915932 @default.
- W2912877569 cites W1992105208 @default.
- W2912877569 cites W1994771629 @default.
- W2912877569 cites W1996316854 @default.
- W2912877569 cites W2008344458 @default.
- W2912877569 cites W2010371409 @default.
- W2912877569 cites W2018364998 @default.
- W2912877569 cites W2028359290 @default.
- W2912877569 cites W2039340285 @default.
- W2912877569 cites W2047545657 @default.
- W2912877569 cites W2056925087 @default.
- W2912877569 cites W2086726221 @default.
- W2912877569 cites W2090158744 @default.
- W2912877569 cites W2092965986 @default.
- W2912877569 cites W2094087386 @default.
- W2912877569 cites W2099509424 @default.
- W2912877569 cites W2100409538 @default.
- W2912877569 cites W2100535248 @default.
- W2912877569 cites W2102369530 @default.
- W2912877569 cites W2105271344 @default.
- W2912877569 cites W2108384452 @default.
- W2912877569 cites W2125675750 @default.
- W2912877569 cites W2126472260 @default.
- W2912877569 cites W2128495200 @default.
- W2912877569 cites W2133999722 @default.
- W2912877569 cites W2142280324 @default.
- W2912877569 cites W2142638745 @default.
- W2912877569 cites W2147854680 @default.
- W2912877569 cites W2149709356 @default.
- W2912877569 cites W2149925546 @default.
- W2912877569 cites W2151971984 @default.
- W2912877569 cites W2152119085 @default.
- W2912877569 cites W2153628662 @default.
- W2912877569 cites W2167217202 @default.
- W2912877569 cites W2169962852 @default.
- W2912877569 cites W2171746332 @default.
- W2912877569 cites W2430114684 @default.
- W2912877569 cites W2519661665 @default.
- W2912877569 cites W2558378728 @default.
- W2912877569 cites W2791145457 @default.
- W2912877569 doi "https://doi.org/10.1016/j.bspc.2019.01.017" @default.
- W2912877569 hasPublicationYear "2019" @default.
- W2912877569 type Work @default.
- W2912877569 sameAs 2912877569 @default.
- W2912877569 citedByCount "10" @default.
- W2912877569 countsByYear W29128775692019 @default.
- W2912877569 countsByYear W29128775692020 @default.
- W2912877569 countsByYear W29128775692021 @default.
- W2912877569 countsByYear W29128775692022 @default.
- W2912877569 countsByYear W29128775692023 @default.
- W2912877569 crossrefType "journal-article" @default.
- W2912877569 hasAuthorship W2912877569A5026466982 @default.
- W2912877569 hasAuthorship W2912877569A5058510872 @default.
- W2912877569 hasAuthorship W2912877569A5066382998 @default.
- W2912877569 hasAuthorship W2912877569A5080687525 @default.
- W2912877569 hasAuthorship W2912877569A5080798381 @default.
- W2912877569 hasConcept C113843644 @default.
- W2912877569 hasConcept C118552586 @default.
- W2912877569 hasConcept C127162648 @default.
- W2912877569 hasConcept C129307140 @default.
- W2912877569 hasConcept C136764020 @default.
- W2912877569 hasConcept C153180895 @default.
- W2912877569 hasConcept C154945302 @default.
- W2912877569 hasConcept C15744967 @default.
- W2912877569 hasConcept C157915830 @default.
- W2912877569 hasConcept C173201364 @default.
- W2912877569 hasConcept C173608175 @default.
- W2912877569 hasConcept C2779182362 @default.
- W2912877569 hasConcept C31258907 @default.
- W2912877569 hasConcept C41008148 @default.
- W2912877569 hasConcept C51432778 @default.
- W2912877569 hasConcept C522805319 @default.
- W2912877569 hasConcept C54808283 @default.
- W2912877569 hasConcept C81917197 @default.
- W2912877569 hasConceptScore W2912877569C113843644 @default.
- W2912877569 hasConceptScore W2912877569C118552586 @default.
- W2912877569 hasConceptScore W2912877569C127162648 @default.
- W2912877569 hasConceptScore W2912877569C129307140 @default.
- W2912877569 hasConceptScore W2912877569C136764020 @default.
- W2912877569 hasConceptScore W2912877569C153180895 @default.
- W2912877569 hasConceptScore W2912877569C154945302 @default.
- W2912877569 hasConceptScore W2912877569C15744967 @default.
- W2912877569 hasConceptScore W2912877569C157915830 @default.
- W2912877569 hasConceptScore W2912877569C173201364 @default.
- W2912877569 hasConceptScore W2912877569C173608175 @default.