Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912882635> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2912882635 abstract "Movement is the essence of many spatiotemporal phenomena around us. Recent advances in tracking technologies have enabled the collection of tremendous amounts of movement trajectory data. Following in the footsteps of data production, computational methods are being developed in order to extract meaningful patterns from the raw movement data. These patterns, in return, can be related to valuable information about the behaviors of the moving objects under study. However, due to the internal and external factors influencing movement, the behaviors maybe compounds of different patterns at various spatial and temporal scales.The focus of this thesis therefore lies on investigating the importance of scale and cross-scale analysis in two movement analysis tasks, namely movement classification and trajectory segmentation. In movement classification, the aim is to build a classification model by finding relationships and rules among movement features in order to assign the input data to known classes. In trajectory segmentation, however, the aim is to decompose a movement trajectory into segments of homogenous movement characteristics. These characteristics can be measured by different geometrical, physiological or semantic properties of movement. The relevance of these two analysis tasks are highly recognized in the literature, however, the consideration of cross-scale aspects has the advantage to improve the commonly used single-scale approaches in the tasks of movement classification and trajectory segmentation.The main contribution of this thesis lies in introducing new methodologies for cross-scale movement analysis. In movement classification, we employed a resampling method for an improvement computation of movement parameters across different temporal scales as input features in the classification. Moreover, the use of discrete wavelet transform (DWT), as another multi-scale measure, is investigated to provide complementary features in movement classification. DWT is further used in trajectory segmentation, where the provided decomposition levels of DWT is used to investigate the variations in movement patterns across different scales.In the addressed tasks, this thesis shows that cross-scale analysis is needed in order to define an analysis scale which matches better to the scale of phenomena under study and that employing such methods yields better-quality results compared to single-scale analysis. The importance of cross-scale analysis was revealed by application on various movement datasets in real-world applications such as neuropharmacology, behavioral ecology, and biology." @default.
- W2912882635 created "2019-02-21" @default.
- W2912882635 creator A5028136977 @default.
- W2912882635 date "2016-01-01" @default.
- W2912882635 modified "2023-09-27" @default.
- W2912882635 title "Cross-scale analysis in classification and segmentation of movement" @default.
- W2912882635 doi "https://doi.org/10.5167/uzh-135275" @default.
- W2912882635 hasPublicationYear "2016" @default.
- W2912882635 type Work @default.
- W2912882635 sameAs 2912882635 @default.
- W2912882635 citedByCount "0" @default.
- W2912882635 crossrefType "dissertation" @default.
- W2912882635 hasAuthorship W2912882635A5028136977 @default.
- W2912882635 hasConcept C107038049 @default.
- W2912882635 hasConcept C120665830 @default.
- W2912882635 hasConcept C121332964 @default.
- W2912882635 hasConcept C1276947 @default.
- W2912882635 hasConcept C13662910 @default.
- W2912882635 hasConcept C138885662 @default.
- W2912882635 hasConcept C153180895 @default.
- W2912882635 hasConcept C154945302 @default.
- W2912882635 hasConcept C192209626 @default.
- W2912882635 hasConcept C205649164 @default.
- W2912882635 hasConcept C2778755073 @default.
- W2912882635 hasConcept C2780226923 @default.
- W2912882635 hasConcept C41008148 @default.
- W2912882635 hasConcept C58640448 @default.
- W2912882635 hasConcept C89600930 @default.
- W2912882635 hasConceptScore W2912882635C107038049 @default.
- W2912882635 hasConceptScore W2912882635C120665830 @default.
- W2912882635 hasConceptScore W2912882635C121332964 @default.
- W2912882635 hasConceptScore W2912882635C1276947 @default.
- W2912882635 hasConceptScore W2912882635C13662910 @default.
- W2912882635 hasConceptScore W2912882635C138885662 @default.
- W2912882635 hasConceptScore W2912882635C153180895 @default.
- W2912882635 hasConceptScore W2912882635C154945302 @default.
- W2912882635 hasConceptScore W2912882635C192209626 @default.
- W2912882635 hasConceptScore W2912882635C205649164 @default.
- W2912882635 hasConceptScore W2912882635C2778755073 @default.
- W2912882635 hasConceptScore W2912882635C2780226923 @default.
- W2912882635 hasConceptScore W2912882635C41008148 @default.
- W2912882635 hasConceptScore W2912882635C58640448 @default.
- W2912882635 hasConceptScore W2912882635C89600930 @default.
- W2912882635 hasLocation W29128826351 @default.
- W2912882635 hasOpenAccess W2912882635 @default.
- W2912882635 hasPrimaryLocation W29128826351 @default.
- W2912882635 hasRelatedWork W117565186 @default.
- W2912882635 hasRelatedWork W142002057 @default.
- W2912882635 hasRelatedWork W2018345398 @default.
- W2912882635 hasRelatedWork W2062231365 @default.
- W2912882635 hasRelatedWork W2110707662 @default.
- W2912882635 hasRelatedWork W2464843777 @default.
- W2912882635 hasRelatedWork W2571582104 @default.
- W2912882635 hasRelatedWork W2579184374 @default.
- W2912882635 hasRelatedWork W2593928673 @default.
- W2912882635 hasRelatedWork W2765319325 @default.
- W2912882635 hasRelatedWork W2803745386 @default.
- W2912882635 hasRelatedWork W2894400281 @default.
- W2912882635 hasRelatedWork W2911241353 @default.
- W2912882635 hasRelatedWork W2919822980 @default.
- W2912882635 hasRelatedWork W2970849355 @default.
- W2912882635 hasRelatedWork W3009818590 @default.
- W2912882635 hasRelatedWork W3134690045 @default.
- W2912882635 hasRelatedWork W3209975686 @default.
- W2912882635 hasRelatedWork W3212820298 @default.
- W2912882635 hasRelatedWork W57896553 @default.
- W2912882635 isParatext "false" @default.
- W2912882635 isRetracted "false" @default.
- W2912882635 magId "2912882635" @default.
- W2912882635 workType "dissertation" @default.