Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912884588> ?p ?o ?g. }
- W2912884588 abstract "Abstract High-grade gliomas are the most aggressive malignant brain tumors. Accurate pre-operative prognosis for this cohort can lead to better treatment planning. Conventional survival prediction based on clinical information is subjective and could be inaccurate. Recent radiomics studies have shown better prognosis by using carefully-engineered image features from magnetic resonance images (MRI). However, feature engineering is usually time consuming, laborious and subjective. Most importantly, the engineered features cannot effectively encode other predictive but implicit information provided by multi-modal neuroimages. We propose a two-stage learning-based method to predict the overall survival (OS) time of high-grade gliomas patient. At the first stage, we adopt deep learning, a recently dominant technique of artificial intelligence, to automatically extract implicit and high-level features from multi-modal, multi-channel preoperative MRI such that the features are competent of predicting survival time. Specifically, we utilize not only contrast-enhanced T1 MRI, but also diffusion tensor imaging (DTI) and resting-state functional MRI (rs-fMRI), for computing multiple metric maps (including various diffusivity metric maps derived from DTI, and also the frequency-specific brain fluctuation amplitude maps and local functional connectivity anisotropy-related metric maps derived from rs-fMRI) from 68 high-grade glioma patients with different survival time. We propose a multi-channel architecture of 3D convolutional neural networks (CNNs) for deep learning upon those metric maps, from which high-level predictive features are extracted for each individual patch of these maps. At the second stage, those deeply learned features along with the pivotal limited demographic and tumor-related features (such as age, tumor size and histological type) are fed into a support vector machine (SVM) to generate the final prediction result (i.e., long or short overall survival time). The experimental results demonstrate that this multi-model, multi-channel deep survival prediction framework achieves an accuracy of 90.66%, outperforming all the competing methods. This study indicates highly demanded effectiveness on prognosis of deep learning technique in neuro-oncological applications for better individualized treatment planning towards precision medicine." @default.
- W2912884588 created "2019-02-21" @default.
- W2912884588 creator A5000937401 @default.
- W2912884588 creator A5011184859 @default.
- W2912884588 creator A5015355317 @default.
- W2912884588 creator A5024162336 @default.
- W2912884588 creator A5035848394 @default.
- W2912884588 creator A5042241049 @default.
- W2912884588 creator A5046225712 @default.
- W2912884588 creator A5050852420 @default.
- W2912884588 creator A5064564558 @default.
- W2912884588 creator A5002454707 @default.
- W2912884588 date "2019-01-31" @default.
- W2912884588 modified "2023-10-11" @default.
- W2912884588 title "Multi-Channel 3D Deep Feature Learning for Survival Time Prediction of Brain Tumor Patients Using Multi-Modal Neuroimages" @default.
- W2912884588 cites W1812256879 @default.
- W2912884588 cites W1860570320 @default.
- W2912884588 cites W1929984647 @default.
- W2912884588 cites W1964997677 @default.
- W2912884588 cites W2000376553 @default.
- W2912884588 cites W2001660159 @default.
- W2912884588 cites W2005558571 @default.
- W2912884588 cites W2008854570 @default.
- W2912884588 cites W2036718463 @default.
- W2912884588 cites W2041532314 @default.
- W2912884588 cites W2046796218 @default.
- W2912884588 cites W2050418754 @default.
- W2912884588 cites W2057550180 @default.
- W2912884588 cites W2064214863 @default.
- W2912884588 cites W2085510136 @default.
- W2912884588 cites W2097985509 @default.
- W2912884588 cites W2098812986 @default.
- W2912884588 cites W2102136830 @default.
- W2912884588 cites W2108333036 @default.
- W2912884588 cites W2112567075 @default.
- W2912884588 cites W2112796928 @default.
- W2912884588 cites W2117060022 @default.
- W2912884588 cites W2121751906 @default.
- W2912884588 cites W2129451688 @default.
- W2912884588 cites W2137401200 @default.
- W2912884588 cites W2142485793 @default.
- W2912884588 cites W2142875089 @default.
- W2912884588 cites W2151103935 @default.
- W2912884588 cites W2151140401 @default.
- W2912884588 cites W2154020722 @default.
- W2912884588 cites W2155893237 @default.
- W2912884588 cites W2162615325 @default.
- W2912884588 cites W2170129724 @default.
- W2912884588 cites W2172458890 @default.
- W2912884588 cites W2175191116 @default.
- W2912884588 cites W2179124818 @default.
- W2912884588 cites W2226147401 @default.
- W2912884588 cites W2272252788 @default.
- W2912884588 cites W2286206973 @default.
- W2912884588 cites W2291628201 @default.
- W2912884588 cites W2322371438 @default.
- W2912884588 cites W2413700323 @default.
- W2912884588 cites W2465688795 @default.
- W2912884588 cites W2490556356 @default.
- W2912884588 cites W2521224740 @default.
- W2912884588 cites W2525157777 @default.
- W2912884588 cites W2533800772 @default.
- W2912884588 cites W2554892747 @default.
- W2912884588 cites W2581082771 @default.
- W2912884588 cites W2735232030 @default.
- W2912884588 cites W2753574794 @default.
- W2912884588 cites W2767209653 @default.
- W2912884588 cites W2919115771 @default.
- W2912884588 cites W3097096317 @default.
- W2912884588 cites W4255289481 @default.
- W2912884588 cites W571060166 @default.
- W2912884588 doi "https://doi.org/10.1038/s41598-018-37387-9" @default.
- W2912884588 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6355868" @default.
- W2912884588 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30705340" @default.
- W2912884588 hasPublicationYear "2019" @default.
- W2912884588 type Work @default.
- W2912884588 sameAs 2912884588 @default.
- W2912884588 citedByCount "123" @default.
- W2912884588 countsByYear W29128845882012 @default.
- W2912884588 countsByYear W29128845882019 @default.
- W2912884588 countsByYear W29128845882020 @default.
- W2912884588 countsByYear W29128845882021 @default.
- W2912884588 countsByYear W29128845882022 @default.
- W2912884588 countsByYear W29128845882023 @default.
- W2912884588 crossrefType "journal-article" @default.
- W2912884588 hasAuthorship W2912884588A5000937401 @default.
- W2912884588 hasAuthorship W2912884588A5002454707 @default.
- W2912884588 hasAuthorship W2912884588A5011184859 @default.
- W2912884588 hasAuthorship W2912884588A5015355317 @default.
- W2912884588 hasAuthorship W2912884588A5024162336 @default.
- W2912884588 hasAuthorship W2912884588A5035848394 @default.
- W2912884588 hasAuthorship W2912884588A5042241049 @default.
- W2912884588 hasAuthorship W2912884588A5046225712 @default.
- W2912884588 hasAuthorship W2912884588A5050852420 @default.
- W2912884588 hasAuthorship W2912884588A5064564558 @default.
- W2912884588 hasBestOaLocation W29128845881 @default.
- W2912884588 hasConcept C108583219 @default.
- W2912884588 hasConcept C119857082 @default.
- W2912884588 hasConcept C126838900 @default.
- W2912884588 hasConcept C138885662 @default.