Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912885386> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2912885386 abstract "Predicting the sales amount as close as to the actual sales amount can provide many benefits to companies. Since the fashion industry is not easily predictable, it is not straightforward to make an accurate prediction of sales. In this study, we applied not only regression methods in machine learning, but also time series analysis techniques to forecast the sales amount based on several features. We applied our models on Walmart sales data in Microsoft Azure Machine Learning Studio platform. The following regression techniques were applied: Linear Regression, Bayesian Regression, Neural Network Regression, Decision Forest Regression and Boosted Decision Tree Regression. In addition to these regression techniques, the following time series analysis methods were implemented: Seasonal ARIMA, Non-Seasonal ARIMA, Seasonal ETS, Non -Seasonal ETS, Naive Method, Average Method and Drift Method. It was shown that Boosted Decision Tree Regression provides the best performance on this sales data. This project is a part of the development of a new decision support system for the retail industry." @default.
- W2912885386 created "2019-02-21" @default.
- W2912885386 creator A5002677119 @default.
- W2912885386 creator A5014493303 @default.
- W2912885386 creator A5038073619 @default.
- W2912885386 creator A5062843717 @default.
- W2912885386 date "2019-01-31" @default.
- W2912885386 modified "2023-10-17" @default.
- W2912885386 title "Benchmarking of Regression Algorithms and Time Series Analysis Techniques for Sales Forecasting" @default.
- W2912885386 doi "https://doi.org/10.17694/bajece.494920" @default.
- W2912885386 hasPublicationYear "2019" @default.
- W2912885386 type Work @default.
- W2912885386 sameAs 2912885386 @default.
- W2912885386 citedByCount "15" @default.
- W2912885386 countsByYear W29128853862020 @default.
- W2912885386 countsByYear W29128853862021 @default.
- W2912885386 countsByYear W29128853862022 @default.
- W2912885386 countsByYear W29128853862023 @default.
- W2912885386 crossrefType "journal-article" @default.
- W2912885386 hasAuthorship W2912885386A5002677119 @default.
- W2912885386 hasAuthorship W2912885386A5014493303 @default.
- W2912885386 hasAuthorship W2912885386A5038073619 @default.
- W2912885386 hasAuthorship W2912885386A5062843717 @default.
- W2912885386 hasBestOaLocation W29128853861 @default.
- W2912885386 hasConcept C105795698 @default.
- W2912885386 hasConcept C11413529 @default.
- W2912885386 hasConcept C119857082 @default.
- W2912885386 hasConcept C143724316 @default.
- W2912885386 hasConcept C144133560 @default.
- W2912885386 hasConcept C149782125 @default.
- W2912885386 hasConcept C151406439 @default.
- W2912885386 hasConcept C151730666 @default.
- W2912885386 hasConcept C152877465 @default.
- W2912885386 hasConcept C162853370 @default.
- W2912885386 hasConcept C33923547 @default.
- W2912885386 hasConcept C41008148 @default.
- W2912885386 hasConcept C83546350 @default.
- W2912885386 hasConcept C86251818 @default.
- W2912885386 hasConcept C86803240 @default.
- W2912885386 hasConceptScore W2912885386C105795698 @default.
- W2912885386 hasConceptScore W2912885386C11413529 @default.
- W2912885386 hasConceptScore W2912885386C119857082 @default.
- W2912885386 hasConceptScore W2912885386C143724316 @default.
- W2912885386 hasConceptScore W2912885386C144133560 @default.
- W2912885386 hasConceptScore W2912885386C149782125 @default.
- W2912885386 hasConceptScore W2912885386C151406439 @default.
- W2912885386 hasConceptScore W2912885386C151730666 @default.
- W2912885386 hasConceptScore W2912885386C152877465 @default.
- W2912885386 hasConceptScore W2912885386C162853370 @default.
- W2912885386 hasConceptScore W2912885386C33923547 @default.
- W2912885386 hasConceptScore W2912885386C41008148 @default.
- W2912885386 hasConceptScore W2912885386C83546350 @default.
- W2912885386 hasConceptScore W2912885386C86251818 @default.
- W2912885386 hasConceptScore W2912885386C86803240 @default.
- W2912885386 hasLocation W29128853861 @default.
- W2912885386 hasLocation W29128853862 @default.
- W2912885386 hasOpenAccess W2912885386 @default.
- W2912885386 hasPrimaryLocation W29128853861 @default.
- W2912885386 hasRelatedWork W1148818407 @default.
- W2912885386 hasRelatedWork W1929834138 @default.
- W2912885386 hasRelatedWork W1970679006 @default.
- W2912885386 hasRelatedWork W2045877109 @default.
- W2912885386 hasRelatedWork W2078427946 @default.
- W2912885386 hasRelatedWork W2080727847 @default.
- W2912885386 hasRelatedWork W2140339747 @default.
- W2912885386 hasRelatedWork W2428049586 @default.
- W2912885386 hasRelatedWork W3021457118 @default.
- W2912885386 hasRelatedWork W3121966509 @default.
- W2912885386 isParatext "false" @default.
- W2912885386 isRetracted "false" @default.
- W2912885386 magId "2912885386" @default.
- W2912885386 workType "article" @default.