Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912886337> ?p ?o ?g. }
- W2912886337 endingPage "470" @default.
- W2912886337 startingPage "462" @default.
- W2912886337 abstract "Nasopharyngeal carcinoma (NPC) is prevalent in certain areas, such as South China, Southeast Asia, and the Middle East. Radiation therapy is the most efficient means to treat this malignant tumor. Positron emission tomography–computed tomography (PET-CT) is a suitable imaging technique to assess this disease. However, the large amount of data produced by numerous patients causes traditional manual delineation of tumor contour, a basic step for radiotherapy, to become time-consuming and labor-intensive. Thus, the demand for automatic and credible segmentation methods to alleviate the workload of radiologists is increasing. This paper presents a method that uses fully convolutional networks with auxiliary paths to achieve automatic segmentation of NPC on PET-CT images. This work is the first to segment NPC using dual-modality PET-CT images. This technique is identical to what is used in clinical practice and offers considerable convenience for subsequent radiotherapy. The deep supervision introduced by auxiliary paths can explicitly guide the training of lower layers, thus enabling these layers to learn more representative features and improve the discriminative capability of the model. Results of threefold cross-validation with a mean dice score of 87.47% demonstrate the efficiency and robustness of the proposed method. The method remarkably outperforms state-of-the-art methods in NPC segmentation. We also validated by experiments that the registration process among different subjects and the auxiliary paths strategy are considerably useful techniques for learning discriminative features and improving segmentation performance." @default.
- W2912886337 created "2019-02-21" @default.
- W2912886337 creator A5008951080 @default.
- W2912886337 creator A5011671643 @default.
- W2912886337 creator A5016388137 @default.
- W2912886337 creator A5028481528 @default.
- W2912886337 creator A5056401979 @default.
- W2912886337 creator A5084999538 @default.
- W2912886337 date "2019-02-04" @default.
- W2912886337 modified "2023-10-16" @default.
- W2912886337 title "Automatic Nasopharyngeal Carcinoma Segmentation Using Fully Convolutional Networks with Auxiliary Paths on Dual-Modality PET-CT Images" @default.
- W2912886337 cites W1677182931 @default.
- W2912886337 cites W1901129140 @default.
- W2912886337 cites W1910102824 @default.
- W2912886337 cites W1972737398 @default.
- W2912886337 cites W1985658992 @default.
- W2912886337 cites W1987869189 @default.
- W2912886337 cites W2008621287 @default.
- W2912886337 cites W2016485197 @default.
- W2912886337 cites W2080593651 @default.
- W2912886337 cites W2085880846 @default.
- W2912886337 cites W2119173284 @default.
- W2912886337 cites W2159077769 @default.
- W2912886337 cites W2259982983 @default.
- W2912886337 cites W2296710954 @default.
- W2912886337 cites W2301358467 @default.
- W2912886337 cites W2310992461 @default.
- W2912886337 cites W2342591535 @default.
- W2912886337 cites W2605687850 @default.
- W2912886337 cites W2608641923 @default.
- W2912886337 cites W2613041730 @default.
- W2912886337 cites W2613456556 @default.
- W2912886337 cites W2777439179 @default.
- W2912886337 cites W2962914239 @default.
- W2912886337 doi "https://doi.org/10.1007/s10278-018-00173-0" @default.
- W2912886337 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6499852" @default.
- W2912886337 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30719587" @default.
- W2912886337 hasPublicationYear "2019" @default.
- W2912886337 type Work @default.
- W2912886337 sameAs 2912886337 @default.
- W2912886337 citedByCount "51" @default.
- W2912886337 countsByYear W29128863372019 @default.
- W2912886337 countsByYear W29128863372020 @default.
- W2912886337 countsByYear W29128863372021 @default.
- W2912886337 countsByYear W29128863372022 @default.
- W2912886337 countsByYear W29128863372023 @default.
- W2912886337 crossrefType "journal-article" @default.
- W2912886337 hasAuthorship W2912886337A5008951080 @default.
- W2912886337 hasAuthorship W2912886337A5011671643 @default.
- W2912886337 hasAuthorship W2912886337A5016388137 @default.
- W2912886337 hasAuthorship W2912886337A5028481528 @default.
- W2912886337 hasAuthorship W2912886337A5056401979 @default.
- W2912886337 hasAuthorship W2912886337A5084999538 @default.
- W2912886337 hasBestOaLocation W29128863372 @default.
- W2912886337 hasConcept C104317684 @default.
- W2912886337 hasConcept C108583219 @default.
- W2912886337 hasConcept C126838900 @default.
- W2912886337 hasConcept C153180895 @default.
- W2912886337 hasConcept C154945302 @default.
- W2912886337 hasConcept C185592680 @default.
- W2912886337 hasConcept C2778818243 @default.
- W2912886337 hasConcept C2778997737 @default.
- W2912886337 hasConcept C2780226545 @default.
- W2912886337 hasConcept C31972630 @default.
- W2912886337 hasConcept C41008148 @default.
- W2912886337 hasConcept C509974204 @default.
- W2912886337 hasConcept C55493867 @default.
- W2912886337 hasConcept C63479239 @default.
- W2912886337 hasConcept C71924100 @default.
- W2912886337 hasConcept C81363708 @default.
- W2912886337 hasConcept C89600930 @default.
- W2912886337 hasConcept C97931131 @default.
- W2912886337 hasConceptScore W2912886337C104317684 @default.
- W2912886337 hasConceptScore W2912886337C108583219 @default.
- W2912886337 hasConceptScore W2912886337C126838900 @default.
- W2912886337 hasConceptScore W2912886337C153180895 @default.
- W2912886337 hasConceptScore W2912886337C154945302 @default.
- W2912886337 hasConceptScore W2912886337C185592680 @default.
- W2912886337 hasConceptScore W2912886337C2778818243 @default.
- W2912886337 hasConceptScore W2912886337C2778997737 @default.
- W2912886337 hasConceptScore W2912886337C2780226545 @default.
- W2912886337 hasConceptScore W2912886337C31972630 @default.
- W2912886337 hasConceptScore W2912886337C41008148 @default.
- W2912886337 hasConceptScore W2912886337C509974204 @default.
- W2912886337 hasConceptScore W2912886337C55493867 @default.
- W2912886337 hasConceptScore W2912886337C63479239 @default.
- W2912886337 hasConceptScore W2912886337C71924100 @default.
- W2912886337 hasConceptScore W2912886337C81363708 @default.
- W2912886337 hasConceptScore W2912886337C89600930 @default.
- W2912886337 hasConceptScore W2912886337C97931131 @default.
- W2912886337 hasIssue "3" @default.
- W2912886337 hasLocation W29128863371 @default.
- W2912886337 hasLocation W29128863372 @default.
- W2912886337 hasLocation W29128863373 @default.
- W2912886337 hasLocation W29128863374 @default.
- W2912886337 hasOpenAccess W2912886337 @default.
- W2912886337 hasPrimaryLocation W29128863371 @default.
- W2912886337 hasRelatedWork W2153315159 @default.