Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912891864> ?p ?o ?g. }
- W2912891864 endingPage "708.e5" @default.
- W2912891864 startingPage "700" @default.
- W2912891864 abstract "Each time a cell divides, the microtubule cytoskeleton self-organizes into the metaphase spindle: an ellipsoidal steady-state structure that holds its stereotyped geometry despite microtubule turnover and internal stresses [1Saxton W.M. Stemple D.L. Leslie R.J. Salmon E.D. Zavortink M. McIntosh J.R. Tubulin dynamics in cultured mammalian cells.J. Cell Biol. 1984; 99: 2175-2186Crossref PubMed Scopus (331) Google Scholar, 2Gorbsky G.J. Simerly C. Schatten G. Borisy G.G. Microtubules in the metaphase-arrested mouse oocyte turn over rapidly.Proc. Natl. Acad. Sci. USA. 1990; 87: 6049-6053Crossref PubMed Scopus (45) Google Scholar, 3Dumont S. Mitchison T.J. Force and length in the mitotic spindle.Curr. Biol. 2009; 19: R749-R761Abstract Full Text Full Text PDF PubMed Scopus (186) Google Scholar, 4McIntosh J.R. Molodtsov M.I. Ataullakhanov F.I. Biophysics of mitosis.Q. Rev. Biophys. 2012; 45: 147-207Crossref PubMed Scopus (93) Google Scholar, 5Brugués J. Needleman D. Physical basis of spindle self-organization.Proc. Natl. Acad. Sci. USA. 2014; 111: 18496-18500Crossref PubMed Scopus (100) Google Scholar, 6Oriola D. Needleman D.J. Brugués J. The physics of the metaphase spindle.Annu. Rev. Biophys. 2018; 47: 655-673Crossref PubMed Scopus (29) Google Scholar]. Regulation of microtubule dynamics, motor proteins, microtubule crosslinking, and chromatid cohesion can modulate spindle size and shape, and yet modulated spindles reach and hold a new steady state [7Goshima G. Wollman R. Stuurman N. Scholey J.M. Vale R.D. Length control of the metaphase spindle.Curr. Biol. 2005; 15: 1979-1988Abstract Full Text Full Text PDF PubMed Scopus (209) Google Scholar, 8Goshima G. Scholey J.M. Control of mitotic spindle length.Annu. Rev. Cell Dev. Biol. 2010; 26: 21-57Crossref PubMed Scopus (158) Google Scholar, 9Helmke K.J. Heald R. Wilbur J.D. Interplay between spindle architecture and function.Int. Rev. Cell Mol. Biol. 2013; 306: 83-125Crossref PubMed Scopus (58) Google Scholar, 10Crowder M.E. Strzelecka M. Wilbur J.D. Good M.C. von Dassow G. Heald R. A comparative analysis of spindle morphometrics across metazoans.Curr. Biol. 2015; 25: 1542-1550Abstract Full Text Full Text PDF PubMed Scopus (69) Google Scholar, 11Farhadifar R. Baer C.F. Valfort A.C. Andersen E.C. Müller-Reichert T. Delattre M. Needleman D.J. Scaling, selection, and evolutionary dynamics of the mitotic spindle.Curr. Biol. 2015; 25: 732-740Abstract Full Text Full Text PDF PubMed Scopus (51) Google Scholar]. Here, we ask what maintains any spindle steady-state geometry. We report that clustering of microtubule ends by dynein and NuMA is essential for mammalian spindles to hold a steady-state shape. After dynein or NuMA deletion, the mitotic microtubule network is “turbulent”; microtubule bundles extend and bend against the cell cortex, constantly remodeling network shape. We find that spindle turbulence is driven by the homotetrameric kinesin-5 Eg5, and that acute Eg5 inhibition in turbulent spindles recovers spindle geometry and stability. Inspired by in vitro work on active turbulent gels of microtubules and kinesin [12Sanchez T. Chen D.T.N. DeCamp S.J. Heymann M. Dogic Z. Spontaneous motion in hierarchically assembled active matter.Nature. 2012; 491: 431-434Crossref PubMed Scopus (892) Google Scholar, 13DeCamp S.J. Redner G.S. Baskaran A. Hagan M.F. Dogic Z. Orientational order of motile defects in active nematics.Nat. Mater. 2015; 14: 1110-1115Crossref PubMed Scopus (206) Google Scholar], we explore the kinematics of this in vivo turbulent network. We find that turbulent spindles display decreased nematic order and that motile asters distort the nematic director field. Finally, we see that turbulent spindles can drive both flow of cytoplasmic organelles and whole-cell movement—analogous to the autonomous motility displayed by droplet-encapsulated turbulent gels [12Sanchez T. Chen D.T.N. DeCamp S.J. Heymann M. Dogic Z. Spontaneous motion in hierarchically assembled active matter.Nature. 2012; 491: 431-434Crossref PubMed Scopus (892) Google Scholar]. Thus, end-clustering by dynein and NuMA is required for mammalian spindles to reach a steady-state geometry, and in their absence Eg5 powers a turbulent microtubule network inside mitotic cells." @default.
- W2912891864 created "2019-02-21" @default.
- W2912891864 creator A5004712664 @default.
- W2912891864 creator A5015163896 @default.
- W2912891864 creator A5024993575 @default.
- W2912891864 creator A5029612834 @default.
- W2912891864 creator A5074883298 @default.
- W2912891864 date "2019-02-01" @default.
- W2912891864 modified "2023-10-13" @default.
- W2912891864 title "Microtubule End-Clustering Maintains a Steady-State Spindle Shape" @default.
- W2912891864 cites W1507819507 @default.
- W2912891864 cites W1859128757 @default.
- W2912891864 cites W1897507705 @default.
- W2912891864 cites W1934704664 @default.
- W2912891864 cites W1988573682 @default.
- W2912891864 cites W1994967651 @default.
- W2912891864 cites W1995746467 @default.
- W2912891864 cites W2001978459 @default.
- W2912891864 cites W2028239476 @default.
- W2912891864 cites W2029189987 @default.
- W2912891864 cites W2033289972 @default.
- W2912891864 cites W2049062573 @default.
- W2912891864 cites W2051283485 @default.
- W2912891864 cites W2056707942 @default.
- W2912891864 cites W2057523896 @default.
- W2912891864 cites W2073868774 @default.
- W2912891864 cites W2074822616 @default.
- W2912891864 cites W2078032922 @default.
- W2912891864 cites W2081882777 @default.
- W2912891864 cites W2098188264 @default.
- W2912891864 cites W2099004980 @default.
- W2912891864 cites W2099337089 @default.
- W2912891864 cites W2119471586 @default.
- W2912891864 cites W2122077019 @default.
- W2912891864 cites W2131002032 @default.
- W2912891864 cites W2131593986 @default.
- W2912891864 cites W2132667305 @default.
- W2912891864 cites W2132705366 @default.
- W2912891864 cites W2133492742 @default.
- W2912891864 cites W2138221697 @default.
- W2912891864 cites W2138378914 @default.
- W2912891864 cites W2143708956 @default.
- W2912891864 cites W2146314877 @default.
- W2912891864 cites W2154974507 @default.
- W2912891864 cites W2157253543 @default.
- W2912891864 cites W2208907061 @default.
- W2912891864 cites W2248624084 @default.
- W2912891864 cites W2290367328 @default.
- W2912891864 cites W2493927721 @default.
- W2912891864 cites W2529052661 @default.
- W2912891864 cites W2588526630 @default.
- W2912891864 cites W2589938762 @default.
- W2912891864 cites W2592312290 @default.
- W2912891864 cites W2610964855 @default.
- W2912891864 cites W2614935042 @default.
- W2912891864 cites W2725435649 @default.
- W2912891864 cites W2768851671 @default.
- W2912891864 cites W2803864499 @default.
- W2912891864 cites W2896999995 @default.
- W2912891864 cites W2949763289 @default.
- W2912891864 cites W3098231892 @default.
- W2912891864 cites W3098538684 @default.
- W2912891864 cites W4211209035 @default.
- W2912891864 doi "https://doi.org/10.1016/j.cub.2019.01.016" @default.
- W2912891864 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6383811" @default.
- W2912891864 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30744975" @default.
- W2912891864 hasPublicationYear "2019" @default.
- W2912891864 type Work @default.
- W2912891864 sameAs 2912891864 @default.
- W2912891864 citedByCount "23" @default.
- W2912891864 countsByYear W29128918642019 @default.
- W2912891864 countsByYear W29128918642020 @default.
- W2912891864 countsByYear W29128918642021 @default.
- W2912891864 countsByYear W29128918642022 @default.
- W2912891864 countsByYear W29128918642023 @default.
- W2912891864 crossrefType "journal-article" @default.
- W2912891864 hasAuthorship W2912891864A5004712664 @default.
- W2912891864 hasAuthorship W2912891864A5015163896 @default.
- W2912891864 hasAuthorship W2912891864A5024993575 @default.
- W2912891864 hasAuthorship W2912891864A5029612834 @default.
- W2912891864 hasAuthorship W2912891864A5074883298 @default.
- W2912891864 hasBestOaLocation W29128918641 @default.
- W2912891864 hasConcept C104317684 @default.
- W2912891864 hasConcept C1491633281 @default.
- W2912891864 hasConcept C20418707 @default.
- W2912891864 hasConcept C2779473830 @default.
- W2912891864 hasConcept C30481170 @default.
- W2912891864 hasConcept C47432576 @default.
- W2912891864 hasConcept C54355233 @default.
- W2912891864 hasConcept C55493867 @default.
- W2912891864 hasConcept C70278784 @default.
- W2912891864 hasConcept C70547292 @default.
- W2912891864 hasConcept C83867959 @default.
- W2912891864 hasConcept C85813293 @default.
- W2912891864 hasConcept C86803240 @default.
- W2912891864 hasConcept C93304396 @default.
- W2912891864 hasConcept C95444343 @default.
- W2912891864 hasConceptScore W2912891864C104317684 @default.