Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912894832> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2912894832 abstract "This thesis is a study of Noetherian PI rings with the property that every proper Artinian homomorphic image is of finite representation type. Our main result is:Theorem 5.1.12 Let R be a Noetherian PI ring, which is an order in an Artinian ring. Suppose that every proper Artinian factor ring of R is of finite representation type. Then R is a direct sum of an Artinian ring of finite representation type and prime hereditary rings.As a special case we have that a prime Noetherian PI ring is hereditary if and only if all its proper Artinian homomorphic images are of finite representation type. The thesis is organized as follows.In Chapter 1 we introduce the terminology and collect well known results on Noetherian rings that we shall use in later chapters. We also include some remarks on the relationship between the J-adic completion of a certain Noetherian prime PI ring and its centre that seem not appear in the literature. In Chapter 2 we present some known characterizations of hereditary rings. We introduce a discussion on rings of finite representation type and give motivation for our study.In Chapter 3 we begin the proof of our main theorem. We adapt the proof of a theorem by S. Brenner [10], which shows that the 2x2 upper triangular matrix ring T₂(Z/p⁴Z) is of infinite type, to the more general case of T₂(D/dnD), where D is a non-commutative local Dedekind prime PI ring and dD its maximal ideal. This result is crucial for the proof of Theorem 5.1.12. The reduction of our problem to this case is allowed by a theorem of M. Auslander (cf. Theorem 3.2.1) on trivial extension rings of Artin algebras. We describe this theorem and show that it holds also for Artinian PI rings. Then we analyze the graph of links between maximal ideals of R. We show that if R is a prime ring satisfying the hypothesis of Theorem 5.1.12 then all cliques of maximal ideals of R are finite. In the last section of this chapter we look at connections between Artinian serial rings and rings of finite representation type. We show that if R is a semiperfect local Noetherian PI ring which is not Artinian and such that R/J(R)² is of finite representation type, then R is a hereditary prime ring. Finally, we introduce some rings related to the ring R satisfying the hypothesis of Theorem 5.1.12, which inherit the property of the homomorphic images and that we shall use for the proof of the theorem.In Chapter 4 we prove Theorem 5.1.12 under the additional assumption that every clique of maximal ideals of R is finite. This is done by analyzing in detail the structure of the J-adic completion of the localisation of R at a clique of maximal ideals. Then from the results of Chapter 3 we deduce that Theorem 5.1.12 holds if R is semiprime.In Chapter 5 we prove that cliques of maximal ideals of R are indeed finite. This finishes the proof of our result. Further, we prove that a Noetherian PI ring whose proper Artinian homomorphic images are all serial is an order in an Artinian ring.In Chapter 6 we prove the analogue of Theorem 5.1.12 for a semiprime PI ring which is affine over a field. Then we give some examples of Noetherian PI rings of different global dimension to show that the assumption in Theorem 5.1.12 on the existence of an Artinian quotient ring for R is necessary.For completeness of our study, some results are stated and proved in more generality than it is needed for the proof of our main theorem." @default.
- W2912894832 created "2019-02-21" @default.
- W2912894832 creator A5028066905 @default.
- W2912894832 date "1999-09-01" @default.
- W2912894832 modified "2023-09-24" @default.
- W2912894832 title "Hereditary rings and rings of finite representation type" @default.
- W2912894832 hasPublicationYear "1999" @default.
- W2912894832 type Work @default.
- W2912894832 sameAs 2912894832 @default.
- W2912894832 citedByCount "0" @default.
- W2912894832 crossrefType "dissertation" @default.
- W2912894832 hasAuthorship W2912894832A5028066905 @default.
- W2912894832 hasConcept C106387445 @default.
- W2912894832 hasConcept C114614502 @default.
- W2912894832 hasConcept C118615104 @default.
- W2912894832 hasConcept C125225535 @default.
- W2912894832 hasConcept C136119220 @default.
- W2912894832 hasConcept C142109727 @default.
- W2912894832 hasConcept C149774684 @default.
- W2912894832 hasConcept C156923205 @default.
- W2912894832 hasConcept C161491579 @default.
- W2912894832 hasConcept C178790620 @default.
- W2912894832 hasConcept C183778304 @default.
- W2912894832 hasConcept C184992742 @default.
- W2912894832 hasConcept C185592680 @default.
- W2912894832 hasConcept C18903297 @default.
- W2912894832 hasConcept C202444582 @default.
- W2912894832 hasConcept C2777299769 @default.
- W2912894832 hasConcept C2777726979 @default.
- W2912894832 hasConcept C2779057376 @default.
- W2912894832 hasConcept C2780378348 @default.
- W2912894832 hasConcept C33923547 @default.
- W2912894832 hasConcept C86803240 @default.
- W2912894832 hasConceptScore W2912894832C106387445 @default.
- W2912894832 hasConceptScore W2912894832C114614502 @default.
- W2912894832 hasConceptScore W2912894832C118615104 @default.
- W2912894832 hasConceptScore W2912894832C125225535 @default.
- W2912894832 hasConceptScore W2912894832C136119220 @default.
- W2912894832 hasConceptScore W2912894832C142109727 @default.
- W2912894832 hasConceptScore W2912894832C149774684 @default.
- W2912894832 hasConceptScore W2912894832C156923205 @default.
- W2912894832 hasConceptScore W2912894832C161491579 @default.
- W2912894832 hasConceptScore W2912894832C178790620 @default.
- W2912894832 hasConceptScore W2912894832C183778304 @default.
- W2912894832 hasConceptScore W2912894832C184992742 @default.
- W2912894832 hasConceptScore W2912894832C185592680 @default.
- W2912894832 hasConceptScore W2912894832C18903297 @default.
- W2912894832 hasConceptScore W2912894832C202444582 @default.
- W2912894832 hasConceptScore W2912894832C2777299769 @default.
- W2912894832 hasConceptScore W2912894832C2777726979 @default.
- W2912894832 hasConceptScore W2912894832C2779057376 @default.
- W2912894832 hasConceptScore W2912894832C2780378348 @default.
- W2912894832 hasConceptScore W2912894832C33923547 @default.
- W2912894832 hasConceptScore W2912894832C86803240 @default.
- W2912894832 hasLocation W29128948321 @default.
- W2912894832 hasOpenAccess W2912894832 @default.
- W2912894832 hasPrimaryLocation W29128948321 @default.
- W2912894832 hasRelatedWork W112630798 @default.
- W2912894832 hasRelatedWork W125861198 @default.
- W2912894832 hasRelatedWork W1542111022 @default.
- W2912894832 hasRelatedWork W170059354 @default.
- W2912894832 hasRelatedWork W1975812643 @default.
- W2912894832 hasRelatedWork W2000614498 @default.
- W2912894832 hasRelatedWork W2008338437 @default.
- W2912894832 hasRelatedWork W2015795306 @default.
- W2912894832 hasRelatedWork W2046753365 @default.
- W2912894832 hasRelatedWork W2056344336 @default.
- W2912894832 hasRelatedWork W2066553550 @default.
- W2912894832 hasRelatedWork W2076505045 @default.
- W2912894832 hasRelatedWork W2087277217 @default.
- W2912894832 hasRelatedWork W2098175669 @default.
- W2912894832 hasRelatedWork W2128416844 @default.
- W2912894832 hasRelatedWork W2158922269 @default.
- W2912894832 hasRelatedWork W2486646920 @default.
- W2912894832 hasRelatedWork W2806683983 @default.
- W2912894832 hasRelatedWork W2809125150 @default.
- W2912894832 hasRelatedWork W2965056235 @default.
- W2912894832 isParatext "false" @default.
- W2912894832 isRetracted "false" @default.
- W2912894832 magId "2912894832" @default.
- W2912894832 workType "dissertation" @default.