Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912902033> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2912902033 abstract "Author(s): Abdalla, Nada | Advisor(s): Banerjee, Sudipto | Abstract: In industrial hygiene, prediction of a worker's exposure to chemical concentrations at the workplace is important for exposure management and prevention. The objective of this dissertation is to consider and address challenges in the statistical analyses of exposure datain industrial hygiene. We outline a flexible Bayesian frameworks for parameter inference and exposure prediction. In particular, we will focus on two applications of the Bayesian approach on exposure data. The rst application is spatial interpolation of chemical concentrations at new locations when measurements are available from coastlines, as is the case in coastal clean-up operations in oil spills. We present novel yet simple methodology for analyzing spatial data that is observed over a coastline. We demonstrate four dierent models using two different representations of the coast. The four models were demonstrated on simulated data and two of them were also demonstrated on a dataset from the GuLF STUDY. Our contribution here is to oer practicing hygienists and exposure assessors with a simple and easy method to implement Bayesian hierarchical models for analyzing and interpolating coastal chemical concentrations.The second application is inference and prediction of chemical concentrations at the workplace using state space models. Exposure assessment models are deterministic models that are usually derived from physical-chemical laws that explain the workplace under theoretically ideal conditions. We propose Bayesian parametric and nonparametric approaches for modeling exposure data in industrial hygiene using a state space model framework which combines information from observations, physical processes and prior knowledge. Posterior inference is obtained via easy implementable Markov chain Monte Carlo (MCMC) algorithms. The performance of the dierent methods will be studied on computer-simulated and controlled laboratory-generated data. We will consider three commonly used occupational exposure physical models varying in complexity." @default.
- W2912902033 created "2019-02-21" @default.
- W2912902033 creator A5041650471 @default.
- W2912902033 date "2018-01-01" @default.
- W2912902033 modified "2023-09-24" @default.
- W2912902033 title "Parametric and Non-parametric Bayesian Modeling of Spatio-temporal Exposure Data in Industrial Hygiene" @default.
- W2912902033 hasPublicationYear "2018" @default.
- W2912902033 type Work @default.
- W2912902033 sameAs 2912902033 @default.
- W2912902033 citedByCount "0" @default.
- W2912902033 crossrefType "journal-article" @default.
- W2912902033 hasAuthorship W2912902033A5041650471 @default.
- W2912902033 hasConcept C104114177 @default.
- W2912902033 hasConcept C105795698 @default.
- W2912902033 hasConcept C107673813 @default.
- W2912902033 hasConcept C114289077 @default.
- W2912902033 hasConcept C117251300 @default.
- W2912902033 hasConcept C119857082 @default.
- W2912902033 hasConcept C124101348 @default.
- W2912902033 hasConcept C134261354 @default.
- W2912902033 hasConcept C137800194 @default.
- W2912902033 hasConcept C154945302 @default.
- W2912902033 hasConcept C160234255 @default.
- W2912902033 hasConcept C17744445 @default.
- W2912902033 hasConcept C187155963 @default.
- W2912902033 hasConcept C199539241 @default.
- W2912902033 hasConcept C2776214188 @default.
- W2912902033 hasConcept C33923547 @default.
- W2912902033 hasConcept C41008148 @default.
- W2912902033 hasConcept C57827392 @default.
- W2912902033 hasConceptScore W2912902033C104114177 @default.
- W2912902033 hasConceptScore W2912902033C105795698 @default.
- W2912902033 hasConceptScore W2912902033C107673813 @default.
- W2912902033 hasConceptScore W2912902033C114289077 @default.
- W2912902033 hasConceptScore W2912902033C117251300 @default.
- W2912902033 hasConceptScore W2912902033C119857082 @default.
- W2912902033 hasConceptScore W2912902033C124101348 @default.
- W2912902033 hasConceptScore W2912902033C134261354 @default.
- W2912902033 hasConceptScore W2912902033C137800194 @default.
- W2912902033 hasConceptScore W2912902033C154945302 @default.
- W2912902033 hasConceptScore W2912902033C160234255 @default.
- W2912902033 hasConceptScore W2912902033C17744445 @default.
- W2912902033 hasConceptScore W2912902033C187155963 @default.
- W2912902033 hasConceptScore W2912902033C199539241 @default.
- W2912902033 hasConceptScore W2912902033C2776214188 @default.
- W2912902033 hasConceptScore W2912902033C33923547 @default.
- W2912902033 hasConceptScore W2912902033C41008148 @default.
- W2912902033 hasConceptScore W2912902033C57827392 @default.
- W2912902033 hasLocation W29129020331 @default.
- W2912902033 hasOpenAccess W2912902033 @default.
- W2912902033 hasPrimaryLocation W29129020331 @default.
- W2912902033 hasRelatedWork W1908066151 @default.
- W2912902033 hasRelatedWork W2023455172 @default.
- W2912902033 hasRelatedWork W2060413212 @default.
- W2912902033 hasRelatedWork W2136772531 @default.
- W2912902033 hasRelatedWork W2157108959 @default.
- W2912902033 hasRelatedWork W2184494913 @default.
- W2912902033 hasRelatedWork W2329893018 @default.
- W2912902033 hasRelatedWork W2407404175 @default.
- W2912902033 hasRelatedWork W2416929707 @default.
- W2912902033 hasRelatedWork W2443927096 @default.
- W2912902033 hasRelatedWork W2506181164 @default.
- W2912902033 hasRelatedWork W2952648887 @default.
- W2912902033 hasRelatedWork W2953388559 @default.
- W2912902033 hasRelatedWork W2955417651 @default.
- W2912902033 hasRelatedWork W2982697513 @default.
- W2912902033 hasRelatedWork W3033706312 @default.
- W2912902033 hasRelatedWork W3040019118 @default.
- W2912902033 hasRelatedWork W3040885580 @default.
- W2912902033 hasRelatedWork W3132032277 @default.
- W2912902033 hasRelatedWork W3028333793 @default.
- W2912902033 isParatext "false" @default.
- W2912902033 isRetracted "false" @default.
- W2912902033 magId "2912902033" @default.
- W2912902033 workType "article" @default.