Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912906518> ?p ?o ?g. }
- W2912906518 abstract "Effective riverine flood forecasting at scale is hindered by a multitude of factors, most notably the need to rely on human calibration in current methodology, the limited amount of data for a specific location, and the computational difficulty of building continent/global level models that are sufficiently accurate. Machine learning (ML) is primed to be useful in this scenario: learned models often surpass human experts in complex high-dimensional scenarios, and the framework of transfer or multitask learning is an appealing solution for leveraging local signals to achieve improved global performance. We propose to build on these strengths and develop ML systems for timely and accurate riverine flood prediction." @default.
- W2912906518 created "2019-02-21" @default.
- W2912906518 creator A5025669300 @default.
- W2912906518 creator A5026687501 @default.
- W2912906518 creator A5034772531 @default.
- W2912906518 creator A5045714778 @default.
- W2912906518 creator A5051514360 @default.
- W2912906518 creator A5056351863 @default.
- W2912906518 creator A5057528634 @default.
- W2912906518 creator A5059935775 @default.
- W2912906518 creator A5065128060 @default.
- W2912906518 creator A5089579452 @default.
- W2912906518 creator A5091732723 @default.
- W2912906518 date "2018-01-01" @default.
- W2912906518 modified "2023-09-27" @default.
- W2912906518 title "ML for Flood Forecasting at Scale" @default.
- W2912906518 cites W1505551852 @default.
- W2912906518 cites W1580822624 @default.
- W2912906518 cites W1981691527 @default.
- W2912906518 cites W1983083246 @default.
- W2912906518 cites W2037825302 @default.
- W2912906518 cites W2046567883 @default.
- W2912906518 cites W2052128921 @default.
- W2912906518 cites W2055336003 @default.
- W2912906518 cites W2064217284 @default.
- W2912906518 cites W2080690725 @default.
- W2912906518 cites W2086886949 @default.
- W2912906518 cites W2090137585 @default.
- W2912906518 cites W2165698076 @default.
- W2912906518 cites W2798058877 @default.
- W2912906518 cites W2891039272 @default.
- W2912906518 cites W2908218674 @default.
- W2912906518 cites W575116294 @default.
- W2912906518 hasPublicationYear "2018" @default.
- W2912906518 type Work @default.
- W2912906518 sameAs 2912906518 @default.
- W2912906518 citedByCount "2" @default.
- W2912906518 countsByYear W29129065182018 @default.
- W2912906518 countsByYear W29129065182020 @default.
- W2912906518 crossrefType "posted-content" @default.
- W2912906518 hasAuthorship W2912906518A5025669300 @default.
- W2912906518 hasAuthorship W2912906518A5026687501 @default.
- W2912906518 hasAuthorship W2912906518A5034772531 @default.
- W2912906518 hasAuthorship W2912906518A5045714778 @default.
- W2912906518 hasAuthorship W2912906518A5051514360 @default.
- W2912906518 hasAuthorship W2912906518A5056351863 @default.
- W2912906518 hasAuthorship W2912906518A5057528634 @default.
- W2912906518 hasAuthorship W2912906518A5059935775 @default.
- W2912906518 hasAuthorship W2912906518A5065128060 @default.
- W2912906518 hasAuthorship W2912906518A5089579452 @default.
- W2912906518 hasAuthorship W2912906518A5091732723 @default.
- W2912906518 hasConcept C105795698 @default.
- W2912906518 hasConcept C111472728 @default.
- W2912906518 hasConcept C119857082 @default.
- W2912906518 hasConcept C138885662 @default.
- W2912906518 hasConcept C150899416 @default.
- W2912906518 hasConcept C154945302 @default.
- W2912906518 hasConcept C165838908 @default.
- W2912906518 hasConcept C166957645 @default.
- W2912906518 hasConcept C183195422 @default.
- W2912906518 hasConcept C205649164 @default.
- W2912906518 hasConcept C2522767166 @default.
- W2912906518 hasConcept C2778755073 @default.
- W2912906518 hasConcept C2780565519 @default.
- W2912906518 hasConcept C33923547 @default.
- W2912906518 hasConcept C41008148 @default.
- W2912906518 hasConcept C58640448 @default.
- W2912906518 hasConcept C74256435 @default.
- W2912906518 hasConceptScore W2912906518C105795698 @default.
- W2912906518 hasConceptScore W2912906518C111472728 @default.
- W2912906518 hasConceptScore W2912906518C119857082 @default.
- W2912906518 hasConceptScore W2912906518C138885662 @default.
- W2912906518 hasConceptScore W2912906518C150899416 @default.
- W2912906518 hasConceptScore W2912906518C154945302 @default.
- W2912906518 hasConceptScore W2912906518C165838908 @default.
- W2912906518 hasConceptScore W2912906518C166957645 @default.
- W2912906518 hasConceptScore W2912906518C183195422 @default.
- W2912906518 hasConceptScore W2912906518C205649164 @default.
- W2912906518 hasConceptScore W2912906518C2522767166 @default.
- W2912906518 hasConceptScore W2912906518C2778755073 @default.
- W2912906518 hasConceptScore W2912906518C2780565519 @default.
- W2912906518 hasConceptScore W2912906518C33923547 @default.
- W2912906518 hasConceptScore W2912906518C41008148 @default.
- W2912906518 hasConceptScore W2912906518C58640448 @default.
- W2912906518 hasConceptScore W2912906518C74256435 @default.
- W2912906518 hasLocation W29129065181 @default.
- W2912906518 hasOpenAccess W2912906518 @default.
- W2912906518 hasPrimaryLocation W29129065181 @default.
- W2912906518 hasRelatedWork W111099895 @default.
- W2912906518 hasRelatedWork W2000490642 @default.
- W2912906518 hasRelatedWork W2048394905 @default.
- W2912906518 hasRelatedWork W2246544348 @default.
- W2912906518 hasRelatedWork W2767248183 @default.
- W2912906518 hasRelatedWork W2795012238 @default.
- W2912906518 hasRelatedWork W2807138771 @default.
- W2912906518 hasRelatedWork W2914463281 @default.
- W2912906518 hasRelatedWork W2984931012 @default.
- W2912906518 hasRelatedWork W3026432248 @default.
- W2912906518 hasRelatedWork W3096980598 @default.
- W2912906518 hasRelatedWork W3107215836 @default.