Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912935170> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2912935170 abstract "Finding clusters of well-connected nodes in a graph is an extensively studied problem in graph-based data analysis. Because of its many applications, a large number of distinct graph clustering objective functions and algorithms have already been proposed and analyzed. To aid practitioners in determining the best clustering approach to use in different applications, we present new techniques for automatically learning how to set clustering resolution parameters. These parameters control the size and structure of communities that are formed by optimizing a generalized objective function. We begin by formalizing the notion of a parameter fitness function, which measures how well a fixed input clustering approximately solves a generalized clustering objective for a specific resolution parameter value. Under reasonable assumptions, which suit two key graph clustering applications, such a parameter fitness function can be efficiently minimized using a bisection-like method, yielding a resolution parameter that fits well with the example clustering. We view our framework as a type of single-shot hyperparameter tuning, as we are able to learn a good resolution parameter with just a single example. Our general approach can be applied to learn resolution parameters for both local and global graph clustering objectives. We demonstrate its utility in several experiments on real-world data where it is helpful to learn resolution parameters from a given example clustering." @default.
- W2912935170 created "2019-02-21" @default.
- W2912935170 creator A5046315164 @default.
- W2912935170 creator A5084102378 @default.
- W2912935170 creator A5087794199 @default.
- W2912935170 date "2019-05-13" @default.
- W2912935170 modified "2023-09-27" @default.
- W2912935170 title "Learning Resolution Parameters for Graph Clustering" @default.
- W2912935170 cites W143174683 @default.
- W2912935170 cites W1988153470 @default.
- W2912935170 cites W2016273060 @default.
- W2912935170 cites W2022704179 @default.
- W2912935170 cites W2027940250 @default.
- W2912935170 cites W2044988896 @default.
- W2912935170 cites W2062716676 @default.
- W2912935170 cites W2086254934 @default.
- W2912935170 cites W2091858563 @default.
- W2912935170 cites W2108614537 @default.
- W2912935170 cites W2128366083 @default.
- W2912935170 cites W2131681506 @default.
- W2912935170 cites W2135512436 @default.
- W2912935170 cites W2146081992 @default.
- W2912935170 cites W2501811501 @default.
- W2912935170 cites W2743418339 @default.
- W2912935170 cites W2914959486 @default.
- W2912935170 cites W3101676988 @default.
- W2912935170 cites W3104252707 @default.
- W2912935170 cites W3126033509 @default.
- W2912935170 doi "https://doi.org/10.1145/3308558.3313471" @default.
- W2912935170 hasPublicationYear "2019" @default.
- W2912935170 type Work @default.
- W2912935170 sameAs 2912935170 @default.
- W2912935170 citedByCount "8" @default.
- W2912935170 countsByYear W29129351702019 @default.
- W2912935170 countsByYear W29129351702020 @default.
- W2912935170 countsByYear W29129351702022 @default.
- W2912935170 countsByYear W29129351702023 @default.
- W2912935170 crossrefType "proceedings-article" @default.
- W2912935170 hasAuthorship W2912935170A5046315164 @default.
- W2912935170 hasAuthorship W2912935170A5084102378 @default.
- W2912935170 hasAuthorship W2912935170A5087794199 @default.
- W2912935170 hasBestOaLocation W29129351702 @default.
- W2912935170 hasConcept C132525143 @default.
- W2912935170 hasConcept C154945302 @default.
- W2912935170 hasConcept C41008148 @default.
- W2912935170 hasConcept C73555534 @default.
- W2912935170 hasConcept C80444323 @default.
- W2912935170 hasConceptScore W2912935170C132525143 @default.
- W2912935170 hasConceptScore W2912935170C154945302 @default.
- W2912935170 hasConceptScore W2912935170C41008148 @default.
- W2912935170 hasConceptScore W2912935170C73555534 @default.
- W2912935170 hasConceptScore W2912935170C80444323 @default.
- W2912935170 hasLocation W29129351701 @default.
- W2912935170 hasLocation W29129351702 @default.
- W2912935170 hasLocation W29129351703 @default.
- W2912935170 hasOpenAccess W2912935170 @default.
- W2912935170 hasPrimaryLocation W29129351701 @default.
- W2912935170 hasRelatedWork W1999627569 @default.
- W2912935170 hasRelatedWork W2333750674 @default.
- W2912935170 hasRelatedWork W2391817034 @default.
- W2912935170 hasRelatedWork W2801014462 @default.
- W2912935170 hasRelatedWork W2900673039 @default.
- W2912935170 hasRelatedWork W3005218912 @default.
- W2912935170 hasRelatedWork W3044187822 @default.
- W2912935170 hasRelatedWork W3095522972 @default.
- W2912935170 hasRelatedWork W4317655900 @default.
- W2912935170 hasRelatedWork W763609066 @default.
- W2912935170 isParatext "false" @default.
- W2912935170 isRetracted "false" @default.
- W2912935170 magId "2912935170" @default.
- W2912935170 workType "article" @default.