Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912943592> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2912943592 endingPage "22" @default.
- W2912943592 startingPage "15" @default.
- W2912943592 abstract "Vehicle re-identification (re-ID) is a vital technique to the urban intelligent video surveillance system and smart city. Given a query vehicle image, the vehicle re-ID aims to search and retrieve the images of the same vehicle that have been captured by different surveillance cameras with various viewing angles. Based on the observation that essential vehicle attributes, like vehicle‘s color and types (e.g., sedan, bus, truck, and so on), could be used as important traits to recognize vehicle, an effective multi-label learning (MLL) method is proposed in this paper that can simultaneously learn three labels: vehicle’s ID, type, and color. With three labels, a multi-label smoothing regularization (MLSR) is further proposed, which can allocate a uniform label distribution to the multi-labeled training images to regularize MLL model and improve vehicle re-ID performance. Extensive experiments conducted on the VeRi and VehicleID datasets have demonstrated that the proposed MLL with MLSR approach can effectively improve the performance delivered by the baseline and outperform multiple state-of-the-art vehicle re-ID methods as well." @default.
- W2912943592 created "2019-02-21" @default.
- W2912943592 creator A5033119978 @default.
- W2912943592 creator A5035422552 @default.
- W2912943592 creator A5048379858 @default.
- W2912943592 creator A5059248438 @default.
- W2912943592 creator A5063471459 @default.
- W2912943592 creator A5081396646 @default.
- W2912943592 date "2019-06-01" @default.
- W2912943592 modified "2023-10-16" @default.
- W2912943592 title "Multi-label learning with multi-label smoothing regularization for vehicle re-identification" @default.
- W2912943592 cites W1966809579 @default.
- W2912943592 cites W1968765912 @default.
- W2912943592 cites W2066916495 @default.
- W2912943592 cites W2117539524 @default.
- W2912943592 cites W2161237103 @default.
- W2912943592 cites W2343104654 @default.
- W2912943592 cites W2589952946 @default.
- W2912943592 cites W2591488409 @default.
- W2912943592 cites W2754887167 @default.
- W2912943592 cites W2756012011 @default.
- W2912943592 cites W2789938689 @default.
- W2912943592 cites W2886523323 @default.
- W2912943592 cites W2889513363 @default.
- W2912943592 cites W2894963073 @default.
- W2912943592 doi "https://doi.org/10.1016/j.neucom.2018.11.088" @default.
- W2912943592 hasPublicationYear "2019" @default.
- W2912943592 type Work @default.
- W2912943592 sameAs 2912943592 @default.
- W2912943592 citedByCount "28" @default.
- W2912943592 countsByYear W29129435922019 @default.
- W2912943592 countsByYear W29129435922020 @default.
- W2912943592 countsByYear W29129435922021 @default.
- W2912943592 countsByYear W29129435922022 @default.
- W2912943592 countsByYear W29129435922023 @default.
- W2912943592 crossrefType "journal-article" @default.
- W2912943592 hasAuthorship W2912943592A5033119978 @default.
- W2912943592 hasAuthorship W2912943592A5035422552 @default.
- W2912943592 hasAuthorship W2912943592A5048379858 @default.
- W2912943592 hasAuthorship W2912943592A5059248438 @default.
- W2912943592 hasAuthorship W2912943592A5063471459 @default.
- W2912943592 hasAuthorship W2912943592A5081396646 @default.
- W2912943592 hasConcept C116834253 @default.
- W2912943592 hasConcept C119857082 @default.
- W2912943592 hasConcept C127413603 @default.
- W2912943592 hasConcept C147176958 @default.
- W2912943592 hasConcept C153180895 @default.
- W2912943592 hasConcept C154945302 @default.
- W2912943592 hasConcept C2776135515 @default.
- W2912943592 hasConcept C31972630 @default.
- W2912943592 hasConcept C3770464 @default.
- W2912943592 hasConcept C41008148 @default.
- W2912943592 hasConcept C47796450 @default.
- W2912943592 hasConcept C59822182 @default.
- W2912943592 hasConcept C84119951 @default.
- W2912943592 hasConcept C86803240 @default.
- W2912943592 hasConcept C89600930 @default.
- W2912943592 hasConceptScore W2912943592C116834253 @default.
- W2912943592 hasConceptScore W2912943592C119857082 @default.
- W2912943592 hasConceptScore W2912943592C127413603 @default.
- W2912943592 hasConceptScore W2912943592C147176958 @default.
- W2912943592 hasConceptScore W2912943592C153180895 @default.
- W2912943592 hasConceptScore W2912943592C154945302 @default.
- W2912943592 hasConceptScore W2912943592C2776135515 @default.
- W2912943592 hasConceptScore W2912943592C31972630 @default.
- W2912943592 hasConceptScore W2912943592C3770464 @default.
- W2912943592 hasConceptScore W2912943592C41008148 @default.
- W2912943592 hasConceptScore W2912943592C47796450 @default.
- W2912943592 hasConceptScore W2912943592C59822182 @default.
- W2912943592 hasConceptScore W2912943592C84119951 @default.
- W2912943592 hasConceptScore W2912943592C86803240 @default.
- W2912943592 hasConceptScore W2912943592C89600930 @default.
- W2912943592 hasFunder F4320321001 @default.
- W2912943592 hasFunder F4320321878 @default.
- W2912943592 hasFunder F4320322182 @default.
- W2912943592 hasLocation W29129435921 @default.
- W2912943592 hasOpenAccess W2912943592 @default.
- W2912943592 hasPrimaryLocation W29129435921 @default.
- W2912943592 hasRelatedWork W1891287906 @default.
- W2912943592 hasRelatedWork W190688913 @default.
- W2912943592 hasRelatedWork W2036778696 @default.
- W2912943592 hasRelatedWork W2051051698 @default.
- W2912943592 hasRelatedWork W2051964242 @default.
- W2912943592 hasRelatedWork W2076586382 @default.
- W2912943592 hasRelatedWork W2111794548 @default.
- W2912943592 hasRelatedWork W2961085424 @default.
- W2912943592 hasRelatedWork W3009482954 @default.
- W2912943592 hasRelatedWork W4200050103 @default.
- W2912943592 hasVolume "345" @default.
- W2912943592 isParatext "false" @default.
- W2912943592 isRetracted "false" @default.
- W2912943592 magId "2912943592" @default.
- W2912943592 workType "article" @default.