Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912951418> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2912951418 abstract "We study an algebraic cycle of the form $Z_0= r {mathbb P}^{frac{n}{2}}+check r check{mathbb P}^{frac{n}{2}}$, $r in{mathbb N},check r in{mathbb Z}, 1leq r , |check r |leq 10, gcd ( r ,check r )=1$, inside the cubic Fermat variety $X_0$ of even dimension $ngeq 4$ and with $dimleft ({mathbb P}^{frac{n}{2}}cap check{mathbb P}^{frac{n}{2}}right)=m$. We take a smooth deformation space $sf S$ of $X_0$ such that the triple $(X_0, {mathbb P}^frac{n}{2}, check{mathbb P}^frac{n}{2})$ becomes rigid. For $m=frac{n}{2}-2$ and for many examples of $Nin{mathbb N}$ and $n$ we show that the $N$-th order Hodge locus attached to $Z_0$ is smooth and reduced of positive dimension if and only if $( r ,check r )=(1,-1)$. In this case, the underlying algebraic cycles are conjectured to be cubic ruled cycles. For $m=frac{n}{2}-3$ the same happens for all choices of coefficients $ r $ and $check r $ and we do not know what kind of algebraic cycles might produce such Hodge cycles. The first case gives us a conjectural description of a component of the Hodge locus, and the second case gives us strong computer assisted evidences for the existence of new Hodge cycles for cubic hypersurfaces. Whereas the well-known construction of Hodge cycles due to D. Mumford and A. Weil for CM abelian varieties, and Y. Andre's motivated cycles can be described in theoretical terms, the full proof of the existence of our Hodge cycle seems to be only possible with more powerful computing machines." @default.
- W2912951418 created "2019-02-21" @default.
- W2912951418 creator A5062049297 @default.
- W2912951418 date "2019-02-03" @default.
- W2912951418 modified "2023-09-27" @default.
- W2912951418 title "Hodge cycles for cubic hypersurfaces" @default.
- W2912951418 cites W13320186 @default.
- W2912951418 cites W1545633177 @default.
- W2912951418 cites W1554991254 @default.
- W2912951418 cites W1592780840 @default.
- W2912951418 cites W1998475137 @default.
- W2912951418 cites W2058056595 @default.
- W2912951418 cites W2171729474 @default.
- W2912951418 cites W2175098281 @default.
- W2912951418 cites W2280405966 @default.
- W2912951418 cites W2317070658 @default.
- W2912951418 cites W2500207072 @default.
- W2912951418 cites W2611771472 @default.
- W2912951418 cites W2737877103 @default.
- W2912951418 cites W2767236331 @default.
- W2912951418 cites W2903793261 @default.
- W2912951418 cites W2963613189 @default.
- W2912951418 hasPublicationYear "2019" @default.
- W2912951418 type Work @default.
- W2912951418 sameAs 2912951418 @default.
- W2912951418 citedByCount "0" @default.
- W2912951418 crossrefType "posted-content" @default.
- W2912951418 hasAuthorship W2912951418A5062049297 @default.
- W2912951418 hasConcept C10138342 @default.
- W2912951418 hasConcept C104317684 @default.
- W2912951418 hasConcept C114614502 @default.
- W2912951418 hasConcept C134306372 @default.
- W2912951418 hasConcept C136170076 @default.
- W2912951418 hasConcept C162324750 @default.
- W2912951418 hasConcept C182306322 @default.
- W2912951418 hasConcept C185592680 @default.
- W2912951418 hasConcept C199793520 @default.
- W2912951418 hasConcept C33676613 @default.
- W2912951418 hasConcept C33923547 @default.
- W2912951418 hasConcept C55493867 @default.
- W2912951418 hasConcept C84597430 @default.
- W2912951418 hasConcept C9376300 @default.
- W2912951418 hasConceptScore W2912951418C10138342 @default.
- W2912951418 hasConceptScore W2912951418C104317684 @default.
- W2912951418 hasConceptScore W2912951418C114614502 @default.
- W2912951418 hasConceptScore W2912951418C134306372 @default.
- W2912951418 hasConceptScore W2912951418C136170076 @default.
- W2912951418 hasConceptScore W2912951418C162324750 @default.
- W2912951418 hasConceptScore W2912951418C182306322 @default.
- W2912951418 hasConceptScore W2912951418C185592680 @default.
- W2912951418 hasConceptScore W2912951418C199793520 @default.
- W2912951418 hasConceptScore W2912951418C33676613 @default.
- W2912951418 hasConceptScore W2912951418C33923547 @default.
- W2912951418 hasConceptScore W2912951418C55493867 @default.
- W2912951418 hasConceptScore W2912951418C84597430 @default.
- W2912951418 hasConceptScore W2912951418C9376300 @default.
- W2912951418 hasLocation W29129514181 @default.
- W2912951418 hasOpenAccess W2912951418 @default.
- W2912951418 hasPrimaryLocation W29129514181 @default.
- W2912951418 hasRelatedWork W2165638110 @default.
- W2912951418 hasRelatedWork W2166798625 @default.
- W2912951418 hasRelatedWork W2187155849 @default.
- W2912951418 hasRelatedWork W2533753341 @default.
- W2912951418 hasRelatedWork W2547113038 @default.
- W2912951418 hasRelatedWork W2765226371 @default.
- W2912951418 hasRelatedWork W2767467929 @default.
- W2912951418 hasRelatedWork W2804915547 @default.
- W2912951418 hasRelatedWork W2898201218 @default.
- W2912951418 hasRelatedWork W2913219104 @default.
- W2912951418 hasRelatedWork W2929645042 @default.
- W2912951418 hasRelatedWork W2952419628 @default.
- W2912951418 hasRelatedWork W2959707788 @default.
- W2912951418 hasRelatedWork W2963536644 @default.
- W2912951418 hasRelatedWork W2963989444 @default.
- W2912951418 hasRelatedWork W3025495851 @default.
- W2912951418 hasRelatedWork W3091887617 @default.
- W2912951418 hasRelatedWork W3107367451 @default.
- W2912951418 hasRelatedWork W3143811163 @default.
- W2912951418 hasRelatedWork W3199892895 @default.
- W2912951418 isParatext "false" @default.
- W2912951418 isRetracted "false" @default.
- W2912951418 magId "2912951418" @default.
- W2912951418 workType "article" @default.