Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912957787> ?p ?o ?g. }
- W2912957787 endingPage "283" @default.
- W2912957787 startingPage "255" @default.
- W2912957787 abstract "The path planning task is defined as the process to compute the motion sequence allowing the robot to move from the start position to the final destination autonomously without human actions. The path planning is one of the popular tasks encountered by imprecision and uncertainties and it has been studied using fuzzy logic systems (FLS). The construction of a well performing fuzzy controller is not always easy. The problem of finding appropriate membership functions and fuzzy rules is a difficult task. However, the design of fuzzy rules is often reliant on heuristic experience and it lacks systematic methodology, therefore these rules might not be correct and consistent. The design can prove to be long and delicate due to the important number of parameters to determine, and can lead then to a solution with poor performance. To cope with this difficulty, many researchers have been working to find and apply learning algorithms for fuzzy controller design. These automatic methods enable to extract information when the knowledge is not available. The most popular approach to optimize fuzzy logic controllers may be a kind of supervised learning where the training data is available. However, in real applications, extraction of training data is not always easy and become impossible when the cost to obtain training data is expensive. For these problems, reinforcement learning (RL) is more suitable than supervised learning. A control strategy with a learning capacity can be carried out by using Q-learning for tuning fuzzy logic controllers; which the robot receives only a scalar signal likes a feedback. This information makes to adjust the robot behavior in order to improve their performances. The basic idea in Q-learning algorithm of RL is to maximize the received rewards after each interaction with the environment. In this chapter, Q-learning algorithm is used to optimize Takagi-Sugeno fuzzy logic controllers for autonomous path planning of a mobile robot. These optimized fuzzy controllers are used for the different robot tasks: goal seeking, obstacle avoidance and wall-following. The obtained results of this optimization method present significant improvements of the robot behaviors." @default.
- W2912957787 created "2019-02-21" @default.
- W2912957787 creator A5014191932 @default.
- W2912957787 creator A5031909800 @default.
- W2912957787 creator A5034274690 @default.
- W2912957787 date "2019-01-01" @default.
- W2912957787 modified "2023-10-17" @default.
- W2912957787 title "Mobile Robot Path Planning Based on Optimized Fuzzy Logic Controllers" @default.
- W2912957787 cites W1551593752 @default.
- W2912957787 cites W172485524 @default.
- W2912957787 cites W1964168945 @default.
- W2912957787 cites W1975292910 @default.
- W2912957787 cites W2029476178 @default.
- W2912957787 cites W2067250467 @default.
- W2912957787 cites W2069830673 @default.
- W2912957787 cites W2087712068 @default.
- W2912957787 cites W2088230758 @default.
- W2912957787 cites W2095950605 @default.
- W2912957787 cites W2103120971 @default.
- W2912957787 cites W2104199249 @default.
- W2912957787 cites W2107726111 @default.
- W2912957787 cites W2111616957 @default.
- W2912957787 cites W2116423661 @default.
- W2912957787 cites W2146345399 @default.
- W2912957787 cites W2150478139 @default.
- W2912957787 cites W2155983580 @default.
- W2912957787 cites W2158316397 @default.
- W2912957787 cites W2164561380 @default.
- W2912957787 cites W2171439396 @default.
- W2912957787 cites W2305205647 @default.
- W2912957787 cites W2413992829 @default.
- W2912957787 cites W4242811155 @default.
- W2912957787 doi "https://doi.org/10.1007/978-981-13-2212-9_12" @default.
- W2912957787 hasPublicationYear "2019" @default.
- W2912957787 type Work @default.
- W2912957787 sameAs 2912957787 @default.
- W2912957787 citedByCount "8" @default.
- W2912957787 countsByYear W29129577872020 @default.
- W2912957787 countsByYear W29129577872021 @default.
- W2912957787 countsByYear W29129577872023 @default.
- W2912957787 crossrefType "book-chapter" @default.
- W2912957787 hasAuthorship W2912957787A5014191932 @default.
- W2912957787 hasAuthorship W2912957787A5031909800 @default.
- W2912957787 hasAuthorship W2912957787A5034274690 @default.
- W2912957787 hasConcept C119857082 @default.
- W2912957787 hasConcept C127413603 @default.
- W2912957787 hasConcept C133731056 @default.
- W2912957787 hasConcept C148671577 @default.
- W2912957787 hasConcept C154945302 @default.
- W2912957787 hasConcept C173801870 @default.
- W2912957787 hasConcept C195975749 @default.
- W2912957787 hasConcept C199360897 @default.
- W2912957787 hasConcept C201995342 @default.
- W2912957787 hasConcept C203479927 @default.
- W2912957787 hasConcept C2777735758 @default.
- W2912957787 hasConcept C2780451532 @default.
- W2912957787 hasConcept C41008148 @default.
- W2912957787 hasConcept C58166 @default.
- W2912957787 hasConcept C6557445 @default.
- W2912957787 hasConcept C81074085 @default.
- W2912957787 hasConcept C86803240 @default.
- W2912957787 hasConcept C90509273 @default.
- W2912957787 hasConcept C97541855 @default.
- W2912957787 hasConceptScore W2912957787C119857082 @default.
- W2912957787 hasConceptScore W2912957787C127413603 @default.
- W2912957787 hasConceptScore W2912957787C133731056 @default.
- W2912957787 hasConceptScore W2912957787C148671577 @default.
- W2912957787 hasConceptScore W2912957787C154945302 @default.
- W2912957787 hasConceptScore W2912957787C173801870 @default.
- W2912957787 hasConceptScore W2912957787C195975749 @default.
- W2912957787 hasConceptScore W2912957787C199360897 @default.
- W2912957787 hasConceptScore W2912957787C201995342 @default.
- W2912957787 hasConceptScore W2912957787C203479927 @default.
- W2912957787 hasConceptScore W2912957787C2777735758 @default.
- W2912957787 hasConceptScore W2912957787C2780451532 @default.
- W2912957787 hasConceptScore W2912957787C41008148 @default.
- W2912957787 hasConceptScore W2912957787C58166 @default.
- W2912957787 hasConceptScore W2912957787C6557445 @default.
- W2912957787 hasConceptScore W2912957787C81074085 @default.
- W2912957787 hasConceptScore W2912957787C86803240 @default.
- W2912957787 hasConceptScore W2912957787C90509273 @default.
- W2912957787 hasConceptScore W2912957787C97541855 @default.
- W2912957787 hasLocation W29129577871 @default.
- W2912957787 hasOpenAccess W2912957787 @default.
- W2912957787 hasPrimaryLocation W29129577871 @default.
- W2912957787 hasRelatedWork W1570961203 @default.
- W2912957787 hasRelatedWork W1983360963 @default.
- W2912957787 hasRelatedWork W2009351657 @default.
- W2912957787 hasRelatedWork W2127579677 @default.
- W2912957787 hasRelatedWork W2164060583 @default.
- W2912957787 hasRelatedWork W2378268441 @default.
- W2912957787 hasRelatedWork W2615329200 @default.
- W2912957787 hasRelatedWork W3158693955 @default.
- W2912957787 hasRelatedWork W3190657081 @default.
- W2912957787 hasRelatedWork W2182510219 @default.
- W2912957787 isParatext "false" @default.
- W2912957787 isRetracted "false" @default.
- W2912957787 magId "2912957787" @default.