Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912958304> ?p ?o ?g. }
- W2912958304 endingPage "4469" @default.
- W2912958304 startingPage "4457" @default.
- W2912958304 abstract "Mixture noise removal is a fundamental problem in hyperspectral images' (HSIs) processing that holds significant practical importance for subsequent applications. This problem can be recast as an approximation issue of a low-rank matrix. In this paper, a novel smooth rank approximation (SRA) model is proposed to cope with these mixture noises for HSIs. The crux idea is to devise a general smooth function under some assumptions to directly approximate the rank function, which attempts to explore a closer approximation than conventional methods. This new optimization model can be easily solved by the convex analysis tool and can remove the mixture noises of HSIs quickly and effectively. Subsequently, we give a feasible iterative algorithm, and the corresponding convergence analysis is discussed mathematically. Experimental results from the simulated data set as well as real data sets illustrate that the proposed SRA method significantly outperforms the state-of-the-art methods on HSI denoising." @default.
- W2912958304 created "2019-02-21" @default.
- W2912958304 creator A5014068004 @default.
- W2912958304 creator A5023547926 @default.
- W2912958304 creator A5045211553 @default.
- W2912958304 creator A5059755489 @default.
- W2912958304 creator A5081858251 @default.
- W2912958304 date "2019-07-01" @default.
- W2912958304 modified "2023-10-16" @default.
- W2912958304 title "A Novel Rank Approximation Method for Mixture Noise Removal of Hyperspectral Images" @default.
- W2912958304 cites W1937669826 @default.
- W2912958304 cites W1968602806 @default.
- W2912958304 cites W1969698720 @default.
- W2912958304 cites W1991003630 @default.
- W2912958304 cites W1994040806 @default.
- W2912958304 cites W2002177959 @default.
- W2912958304 cites W2005612613 @default.
- W2912958304 cites W2009702064 @default.
- W2912958304 cites W2028781966 @default.
- W2912958304 cites W2031510368 @default.
- W2912958304 cites W2039596145 @default.
- W2912958304 cites W2045983409 @default.
- W2912958304 cites W2053514113 @default.
- W2912958304 cites W2056370875 @default.
- W2912958304 cites W2096214786 @default.
- W2912958304 cites W2097073572 @default.
- W2912958304 cites W2118550318 @default.
- W2912958304 cites W2121338139 @default.
- W2912958304 cites W2125298866 @default.
- W2912958304 cites W2140702875 @default.
- W2912958304 cites W2145962650 @default.
- W2912958304 cites W2153663612 @default.
- W2912958304 cites W2155633677 @default.
- W2912958304 cites W2160484748 @default.
- W2912958304 cites W2162276208 @default.
- W2912958304 cites W2170947705 @default.
- W2912958304 cites W2171125155 @default.
- W2912958304 cites W2289756263 @default.
- W2912958304 cites W2293524743 @default.
- W2912958304 cites W2320738207 @default.
- W2912958304 cites W2329868263 @default.
- W2912958304 cites W2336406062 @default.
- W2912958304 cites W2417947228 @default.
- W2912958304 cites W2515271729 @default.
- W2912958304 cites W2529441728 @default.
- W2912958304 cites W2553223177 @default.
- W2912958304 cites W2554490261 @default.
- W2912958304 cites W2585357012 @default.
- W2912958304 cites W2601517469 @default.
- W2912958304 cites W2624340958 @default.
- W2912958304 cites W2753248899 @default.
- W2912958304 cites W2766594578 @default.
- W2912958304 cites W2773415061 @default.
- W2912958304 cites W2792111852 @default.
- W2912958304 cites W3122238562 @default.
- W2912958304 doi "https://doi.org/10.1109/tgrs.2019.2891288" @default.
- W2912958304 hasPublicationYear "2019" @default.
- W2912958304 type Work @default.
- W2912958304 sameAs 2912958304 @default.
- W2912958304 citedByCount "24" @default.
- W2912958304 countsByYear W29129583042019 @default.
- W2912958304 countsByYear W29129583042020 @default.
- W2912958304 countsByYear W29129583042021 @default.
- W2912958304 countsByYear W29129583042022 @default.
- W2912958304 countsByYear W29129583042023 @default.
- W2912958304 crossrefType "journal-article" @default.
- W2912958304 hasAuthorship W2912958304A5014068004 @default.
- W2912958304 hasAuthorship W2912958304A5023547926 @default.
- W2912958304 hasAuthorship W2912958304A5045211553 @default.
- W2912958304 hasAuthorship W2912958304A5059755489 @default.
- W2912958304 hasAuthorship W2912958304A5081858251 @default.
- W2912958304 hasConcept C106487976 @default.
- W2912958304 hasConcept C112680207 @default.
- W2912958304 hasConcept C11413529 @default.
- W2912958304 hasConcept C114614502 @default.
- W2912958304 hasConcept C115961682 @default.
- W2912958304 hasConcept C126255220 @default.
- W2912958304 hasConcept C134306372 @default.
- W2912958304 hasConcept C14036430 @default.
- W2912958304 hasConcept C145446738 @default.
- W2912958304 hasConcept C148764684 @default.
- W2912958304 hasConcept C154945302 @default.
- W2912958304 hasConcept C159078339 @default.
- W2912958304 hasConcept C159694833 @default.
- W2912958304 hasConcept C159985019 @default.
- W2912958304 hasConcept C162324750 @default.
- W2912958304 hasConcept C163294075 @default.
- W2912958304 hasConcept C164226766 @default.
- W2912958304 hasConcept C192562407 @default.
- W2912958304 hasConcept C25023664 @default.
- W2912958304 hasConcept C2524010 @default.
- W2912958304 hasConcept C2777303404 @default.
- W2912958304 hasConcept C33923547 @default.
- W2912958304 hasConcept C41008148 @default.
- W2912958304 hasConcept C50522688 @default.
- W2912958304 hasConcept C78458016 @default.
- W2912958304 hasConcept C86803240 @default.
- W2912958304 hasConcept C90199385 @default.