Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912961521> ?p ?o ?g. }
- W2912961521 endingPage "4833" @default.
- W2912961521 startingPage "4823" @default.
- W2912961521 abstract "As one of the fundamental research topics in remote sensing image analysis, hyperspectral image (HSI) classification has been extensively studied so far. However, how to discriminatively learn a low-dimensional feature space, in which the mapped features have small within-class scatter and big between-class separation, is still a challenging problem. To address this issue, this paper proposes an effective framework, named compact and discriminative stacked autoencoder (CDSAE), for HSI classification. The proposed CDSAE framework comprises two stages with different optimization objectives, which can learn discriminative low-dimensional feature mappings and train an effective classifier progressively. First, we impose a local Fisher discriminant regularization on each hidden layer of stacked autoencoder (SAE) to train discriminative SAE (DSAE) by minimizing reconstruction error. This stage can learn feature mappings, in which the pixels from the same land-cover class are mapped as nearly as possible and the pixels from different land-cover categories are separated by a large margin. Second, we learn an effective classifier and meanwhile update DSAE with a local Fisher discriminant regularization being embedded on the top of feature representations. Moreover, to learn a compact DSAE with as small number of hidden neurons as possible, we impose a diversity regularization on the hidden neurons of DSAE to balance the feature dimensionality and the feature representation capability. The experimental results on three widely-used HSI data sets and comprehensive comparisons with existing methods demonstrate that our proposed method is effective." @default.
- W2912961521 created "2019-02-21" @default.
- W2912961521 creator A5012529382 @default.
- W2912961521 creator A5015525872 @default.
- W2912961521 creator A5063501920 @default.
- W2912961521 creator A5080476856 @default.
- W2912961521 date "2019-07-01" @default.
- W2912961521 modified "2023-10-14" @default.
- W2912961521 title "Learning Compact and Discriminative Stacked Autoencoder for Hyperspectral Image Classification" @default.
- W2912961521 cites W1481061252 @default.
- W2912961521 cites W1521436688 @default.
- W2912961521 cites W1939429412 @default.
- W2912961521 cites W1972524915 @default.
- W2912961521 cites W1979730959 @default.
- W2912961521 cites W1998030734 @default.
- W2912961521 cites W2029316659 @default.
- W2912961521 cites W2041100636 @default.
- W2912961521 cites W2049003564 @default.
- W2912961521 cites W2052160904 @default.
- W2912961521 cites W2053615857 @default.
- W2912961521 cites W2054854521 @default.
- W2912961521 cites W2063069198 @default.
- W2912961521 cites W2082732714 @default.
- W2912961521 cites W2085529604 @default.
- W2912961521 cites W2092869901 @default.
- W2912961521 cites W2113464037 @default.
- W2912961521 cites W2114217318 @default.
- W2912961521 cites W2114819256 @default.
- W2912961521 cites W2136251662 @default.
- W2912961521 cites W2152057649 @default.
- W2912961521 cites W2158400785 @default.
- W2912961521 cites W2166923144 @default.
- W2912961521 cites W2169500530 @default.
- W2912961521 cites W2270801692 @default.
- W2912961521 cites W2293264500 @default.
- W2912961521 cites W2294492906 @default.
- W2912961521 cites W2295576075 @default.
- W2912961521 cites W2315347323 @default.
- W2912961521 cites W2338459354 @default.
- W2912961521 cites W2500751094 @default.
- W2912961521 cites W2512351403 @default.
- W2912961521 cites W2548791488 @default.
- W2912961521 cites W2557543785 @default.
- W2912961521 cites W2577727229 @default.
- W2912961521 cites W2615981376 @default.
- W2912961521 cites W2732412926 @default.
- W2912961521 cites W2737996023 @default.
- W2912961521 cites W2740976805 @default.
- W2912961521 cites W2743255627 @default.
- W2912961521 cites W2762381996 @default.
- W2912961521 cites W2764205729 @default.
- W2912961521 cites W2765838470 @default.
- W2912961521 cites W2767805377 @default.
- W2912961521 cites W2768309288 @default.
- W2912961521 cites W2772147448 @default.
- W2912961521 cites W2779335303 @default.
- W2912961521 cites W2783165089 @default.
- W2912961521 cites W2783978965 @default.
- W2912961521 cites W2791928749 @default.
- W2912961521 cites W2795547044 @default.
- W2912961521 cites W2799870441 @default.
- W2912961521 cites W2809635958 @default.
- W2912961521 cites W2884158490 @default.
- W2912961521 cites W2888527098 @default.
- W2912961521 cites W3100245404 @default.
- W2912961521 cites W3100499011 @default.
- W2912961521 cites W3103856189 @default.
- W2912961521 cites W4214564766 @default.
- W2912961521 doi "https://doi.org/10.1109/tgrs.2019.2893180" @default.
- W2912961521 hasPublicationYear "2019" @default.
- W2912961521 type Work @default.
- W2912961521 sameAs 2912961521 @default.
- W2912961521 citedByCount "187" @default.
- W2912961521 countsByYear W29129615212019 @default.
- W2912961521 countsByYear W29129615212020 @default.
- W2912961521 countsByYear W29129615212021 @default.
- W2912961521 countsByYear W29129615212022 @default.
- W2912961521 countsByYear W29129615212023 @default.
- W2912961521 crossrefType "journal-article" @default.
- W2912961521 hasAuthorship W2912961521A5012529382 @default.
- W2912961521 hasAuthorship W2912961521A5015525872 @default.
- W2912961521 hasAuthorship W2912961521A5063501920 @default.
- W2912961521 hasAuthorship W2912961521A5080476856 @default.
- W2912961521 hasConcept C101738243 @default.
- W2912961521 hasConcept C108583219 @default.
- W2912961521 hasConcept C115961682 @default.
- W2912961521 hasConcept C138885662 @default.
- W2912961521 hasConcept C153180895 @default.
- W2912961521 hasConcept C154945302 @default.
- W2912961521 hasConcept C159078339 @default.
- W2912961521 hasConcept C160633673 @default.
- W2912961521 hasConcept C2776135515 @default.
- W2912961521 hasConcept C2776401178 @default.
- W2912961521 hasConcept C41008148 @default.
- W2912961521 hasConcept C41895202 @default.
- W2912961521 hasConcept C52622490 @default.
- W2912961521 hasConcept C59404180 @default.
- W2912961521 hasConcept C69738355 @default.