Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912961626> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2912961626 endingPage "6" @default.
- W2912961626 startingPage "1" @default.
- W2912961626 abstract "Abstract — cardiovascular diseases are among the most common diseases in all societies. The most important step in minimizing myocardial infarction and its complications is to minimize its risk factors. The amount of medical data is increasingly growing. Medical data mining has a great potential for transforming these data into information. Using data mining techniques to generate predictive models for identifying those at risk for reducing the effects of the disease is very helpful. The present study aimed to collect data related to risk factors of heart infarction from patients’ medical record and developed predicting models using data mining algorithm. The present work was an analytical study conducted on a database containing 350 records. Data were related to patients admitted to Shahid Rajaei specialized cardiovascular hospital, Iran, in 2011. Data were collected using a four-sectioned data collection form. Data analysis was performed using SPSS and Clementine version 12. Seven predictive algorithms and one algorithm-based model for predicting association rules were applied to the data. Accuracy, precision, sensitivity, specificity, as well as positive and negative predictive values were determined and the final model was obtained. Based on the association rules, five parameters, including hypertension, DLP, tobacco smoking, diabetes, and A+ blood group, were the most critical risk factors of myocardial infarction. Among the models, the neural network model was found to have the highest sensitivity, indicating its ability to successfully diagnose the disease. However, since we were not able to determine the rational of this model, and considering the fact that our major goal was to present a model with the highest precision which is also applicable for clinical purposes, the CHAID model with an overall precision of 93.4%was selected as the final model. Risk prediction models have great potentials in facilitating the management of a patient with a specific disease. Therefore, health interventions or change in their life style can be conducted based on these models for improving the health conditions of the individuals at risk.Keywords — decision trees, neural network, myocardial infarction, Data Mining." @default.
- W2912961626 created "2019-02-21" @default.
- W2912961626 creator A5012235448 @default.
- W2912961626 creator A5018861302 @default.
- W2912961626 creator A5025834953 @default.
- W2912961626 creator A5033943409 @default.
- W2912961626 creator A5057100080 @default.
- W2912961626 creator A5076339594 @default.
- W2912961626 date "2013-12-15" @default.
- W2912961626 modified "2023-09-27" @default.
- W2912961626 title "A model for predicting myocardial infarction using data mining techniques" @default.
- W2912961626 hasPublicationYear "2013" @default.
- W2912961626 type Work @default.
- W2912961626 sameAs 2912961626 @default.
- W2912961626 citedByCount "0" @default.
- W2912961626 crossrefType "journal-article" @default.
- W2912961626 hasAuthorship W2912961626A5012235448 @default.
- W2912961626 hasAuthorship W2912961626A5018861302 @default.
- W2912961626 hasAuthorship W2912961626A5025834953 @default.
- W2912961626 hasAuthorship W2912961626A5033943409 @default.
- W2912961626 hasAuthorship W2912961626A5057100080 @default.
- W2912961626 hasAuthorship W2912961626A5076339594 @default.
- W2912961626 hasConcept C119857082 @default.
- W2912961626 hasConcept C124101348 @default.
- W2912961626 hasConcept C126322002 @default.
- W2912961626 hasConcept C138885662 @default.
- W2912961626 hasConcept C154945302 @default.
- W2912961626 hasConcept C27206212 @default.
- W2912961626 hasConcept C2778796999 @default.
- W2912961626 hasConcept C41008148 @default.
- W2912961626 hasConcept C45804977 @default.
- W2912961626 hasConcept C500558357 @default.
- W2912961626 hasConcept C50644808 @default.
- W2912961626 hasConcept C71924100 @default.
- W2912961626 hasConceptScore W2912961626C119857082 @default.
- W2912961626 hasConceptScore W2912961626C124101348 @default.
- W2912961626 hasConceptScore W2912961626C126322002 @default.
- W2912961626 hasConceptScore W2912961626C138885662 @default.
- W2912961626 hasConceptScore W2912961626C154945302 @default.
- W2912961626 hasConceptScore W2912961626C27206212 @default.
- W2912961626 hasConceptScore W2912961626C2778796999 @default.
- W2912961626 hasConceptScore W2912961626C41008148 @default.
- W2912961626 hasConceptScore W2912961626C45804977 @default.
- W2912961626 hasConceptScore W2912961626C500558357 @default.
- W2912961626 hasConceptScore W2912961626C50644808 @default.
- W2912961626 hasConceptScore W2912961626C71924100 @default.
- W2912961626 hasIssue "4" @default.
- W2912961626 hasLocation W29129616261 @default.
- W2912961626 hasOpenAccess W2912961626 @default.
- W2912961626 hasPrimaryLocation W29129616261 @default.
- W2912961626 hasRelatedWork W2116012380 @default.
- W2912961626 hasRelatedWork W2239135493 @default.
- W2912961626 hasRelatedWork W2273969070 @default.
- W2912961626 hasRelatedWork W2604039019 @default.
- W2912961626 hasRelatedWork W2726658429 @default.
- W2912961626 hasRelatedWork W2764216523 @default.
- W2912961626 hasRelatedWork W2765668091 @default.
- W2912961626 hasRelatedWork W2885546828 @default.
- W2912961626 hasRelatedWork W2900794383 @default.
- W2912961626 hasRelatedWork W2901607560 @default.
- W2912961626 hasRelatedWork W2907024049 @default.
- W2912961626 hasRelatedWork W2986446268 @default.
- W2912961626 hasRelatedWork W3085135947 @default.
- W2912961626 hasRelatedWork W3099959576 @default.
- W2912961626 hasRelatedWork W3119296006 @default.
- W2912961626 hasRelatedWork W3156611064 @default.
- W2912961626 hasRelatedWork W3203154783 @default.
- W2912961626 hasRelatedWork W3203577970 @default.
- W2912961626 hasRelatedWork W3212899834 @default.
- W2912961626 hasRelatedWork W642743220 @default.
- W2912961626 hasVolume "2" @default.
- W2912961626 isParatext "false" @default.
- W2912961626 isRetracted "false" @default.
- W2912961626 magId "2912961626" @default.
- W2912961626 workType "article" @default.