Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912963483> ?p ?o ?g. }
- W2912963483 endingPage "1751" @default.
- W2912963483 startingPage "1740" @default.
- W2912963483 abstract "Accurate three-dimensional (3D) segmentation of myocardial replacement fibrosis (i.e., scar) is emerging as a potentially valuable tool for risk stratification and procedural planning in patients with ischemic cardiomyopathy. The main purpose of this study was to develop a semiautomated method using a 3D convolutional neural network (CNN)-based for the segmentation of left ventricle (LV) myocardial scar from 3D late gadolinium enhancement magnetic resonance (LGE-MR) images.Our proposed CNN is built upon several convolutional and pooling layers aimed at choosing appropriate features from LGE-MR images to distinguish between myocardial scar and healthy tissues of the left ventricle. In contrast to previous methods that consider image intensity as the sole feature, CNN-based algorithms have the potential to improve the accuracy of scar segmentation through the creation of unconventional features that separate scar from normal myocardium in the feature space. The first step of our pipeline was to manually delineate the left ventricular myocardium, which was used as the region of interest for scar segmentation. Our developed algorithm was trained using 265,220 volume patches extracted from ten 3D LGE-MR images, then was validated on 450,454 patches from a testing dataset of 24 3D LGE-MR images, all obtained from patients with chronic myocardial infarction. We evaluated our method in the context of several alternative methods by comparing algorithm-generated segmentations to manual delineations performed by experts.Our CNN-based method reported an average Dice similarity coefficient (DSC) and Jaccard Index (JI) of 93.63% ± 2.6% and 88.13% ± 4.70%. In comparison to several previous methods, including K-nearest neighbor (KNN), hierarchical max flow (HMF), full width at half maximum (FWHM), and signal threshold to reference mean (STRM), the developed algorithm reported significantly higher accuracy for DSC with a P-value less than 0.0001.Our experimental results demonstrated that our CNN-based proposed method yielded the highest accuracy of all contemporary LV myocardial scar segmentation methodologies, inclusive of the most widely used signal intensity-based methods, such as FWHM and STRM. To our knowledge, this is the first description of LV myocardial scar tissue segmentation from 3D LGE-MR images using a CNN-based method." @default.
- W2912963483 created "2019-02-21" @default.
- W2912963483 creator A5014173669 @default.
- W2912963483 creator A5044454144 @default.
- W2912963483 creator A5070858953 @default.
- W2912963483 date "2019-02-28" @default.
- W2912963483 modified "2023-10-15" @default.
- W2912963483 title "Convolutional neural network‐based approach for segmentation of left ventricle myocardial scar from 3D late gadolinium enhancement <scp>MR</scp> images" @default.
- W2912963483 cites W1602302494 @default.
- W2912963483 cites W1970399645 @default.
- W2912963483 cites W1971077219 @default.
- W2912963483 cites W1979226691 @default.
- W2912963483 cites W1987512289 @default.
- W2912963483 cites W1988707821 @default.
- W2912963483 cites W1989443948 @default.
- W2912963483 cites W2014943941 @default.
- W2912963483 cites W2025362214 @default.
- W2912963483 cites W2043037509 @default.
- W2912963483 cites W2082718270 @default.
- W2912963483 cites W2087293462 @default.
- W2912963483 cites W2100831002 @default.
- W2912963483 cites W2118333950 @default.
- W2912963483 cites W2127890285 @default.
- W2912963483 cites W2155355212 @default.
- W2912963483 cites W2156011709 @default.
- W2912963483 cites W2160241374 @default.
- W2912963483 cites W2171177394 @default.
- W2912963483 cites W2224495944 @default.
- W2912963483 cites W2225469099 @default.
- W2912963483 cites W2302541206 @default.
- W2912963483 cites W2310992461 @default.
- W2912963483 cites W2367512715 @default.
- W2912963483 cites W2383601426 @default.
- W2912963483 cites W2522294212 @default.
- W2912963483 cites W2538673204 @default.
- W2912963483 cites W2581415156 @default.
- W2912963483 cites W2605850958 @default.
- W2912963483 cites W2610039931 @default.
- W2912963483 cites W2671849895 @default.
- W2912963483 cites W2734454056 @default.
- W2912963483 cites W2739807629 @default.
- W2912963483 cites W2791267892 @default.
- W2912963483 cites W2889609823 @default.
- W2912963483 cites W2919115771 @default.
- W2912963483 cites W56110897 @default.
- W2912963483 cites W621251951 @default.
- W2912963483 cites W843648739 @default.
- W2912963483 cites W97115188 @default.
- W2912963483 doi "https://doi.org/10.1002/mp.13436" @default.
- W2912963483 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30734937" @default.
- W2912963483 hasPublicationYear "2019" @default.
- W2912963483 type Work @default.
- W2912963483 sameAs 2912963483 @default.
- W2912963483 citedByCount "40" @default.
- W2912963483 countsByYear W29129634832019 @default.
- W2912963483 countsByYear W29129634832020 @default.
- W2912963483 countsByYear W29129634832021 @default.
- W2912963483 countsByYear W29129634832022 @default.
- W2912963483 countsByYear W29129634832023 @default.
- W2912963483 crossrefType "journal-article" @default.
- W2912963483 hasAuthorship W2912963483A5014173669 @default.
- W2912963483 hasAuthorship W2912963483A5044454144 @default.
- W2912963483 hasAuthorship W2912963483A5070858953 @default.
- W2912963483 hasBestOaLocation W29129634831 @default.
- W2912963483 hasConcept C124504099 @default.
- W2912963483 hasConcept C126838900 @default.
- W2912963483 hasConcept C143409427 @default.
- W2912963483 hasConcept C151730666 @default.
- W2912963483 hasConcept C153180895 @default.
- W2912963483 hasConcept C154945302 @default.
- W2912963483 hasConcept C163892561 @default.
- W2912963483 hasConcept C164705383 @default.
- W2912963483 hasConcept C203519979 @default.
- W2912963483 hasConcept C2778921608 @default.
- W2912963483 hasConcept C2779343474 @default.
- W2912963483 hasConcept C41008148 @default.
- W2912963483 hasConcept C500558357 @default.
- W2912963483 hasConcept C71924100 @default.
- W2912963483 hasConcept C81363708 @default.
- W2912963483 hasConcept C86803240 @default.
- W2912963483 hasConcept C89600930 @default.
- W2912963483 hasConceptScore W2912963483C124504099 @default.
- W2912963483 hasConceptScore W2912963483C126838900 @default.
- W2912963483 hasConceptScore W2912963483C143409427 @default.
- W2912963483 hasConceptScore W2912963483C151730666 @default.
- W2912963483 hasConceptScore W2912963483C153180895 @default.
- W2912963483 hasConceptScore W2912963483C154945302 @default.
- W2912963483 hasConceptScore W2912963483C163892561 @default.
- W2912963483 hasConceptScore W2912963483C164705383 @default.
- W2912963483 hasConceptScore W2912963483C203519979 @default.
- W2912963483 hasConceptScore W2912963483C2778921608 @default.
- W2912963483 hasConceptScore W2912963483C2779343474 @default.
- W2912963483 hasConceptScore W2912963483C41008148 @default.
- W2912963483 hasConceptScore W2912963483C500558357 @default.
- W2912963483 hasConceptScore W2912963483C71924100 @default.
- W2912963483 hasConceptScore W2912963483C81363708 @default.
- W2912963483 hasConceptScore W2912963483C86803240 @default.
- W2912963483 hasConceptScore W2912963483C89600930 @default.