Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912971066> ?p ?o ?g. }
- W2912971066 endingPage "379" @default.
- W2912971066 startingPage "364" @default.
- W2912971066 abstract "Abstract Objective Natural language processing (NLP) of symptoms from electronic health records (EHRs) could contribute to the advancement of symptom science. We aim to synthesize the literature on the use of NLP to process or analyze symptom information documented in EHR free-text narratives. Materials and Methods Our search of 1964 records from PubMed and EMBASE was narrowed to 27 eligible articles. Data related to the purpose, free-text corpus, patients, symptoms, NLP methodology, evaluation metrics, and quality indicators were extracted for each study. Results Symptom-related information was presented as a primary outcome in 14 studies. EHR narratives represented various inpatient and outpatient clinical specialties, with general, cardiology, and mental health occurring most frequently. Studies encompassed a wide variety of symptoms, including shortness of breath, pain, nausea, dizziness, disturbed sleep, constipation, and depressed mood. NLP approaches included previously developed NLP tools, classification methods, and manually curated rule-based processing. Only one-third (n = 9) of studies reported patient demographic characteristics. Discussion NLP is used to extract information from EHR free-text narratives written by a variety of healthcare providers on an expansive range of symptoms across diverse clinical specialties. The current focus of this field is on the development of methods to extract symptom information and the use of symptom information for disease classification tasks rather than the examination of symptoms themselves. Conclusion Future NLP studies should concentrate on the investigation of symptoms and symptom documentation in EHR free-text narratives. Efforts should be undertaken to examine patient characteristics and make symptom-related NLP algorithms or pipelines and vocabularies openly available." @default.
- W2912971066 created "2019-02-21" @default.
- W2912971066 creator A5033415531 @default.
- W2912971066 creator A5038579832 @default.
- W2912971066 creator A5075833022 @default.
- W2912971066 creator A5085031426 @default.
- W2912971066 date "2019-02-06" @default.
- W2912971066 modified "2023-10-17" @default.
- W2912971066 title "Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review" @default.
- W2912971066 cites W1019512417 @default.
- W2912971066 cites W174904603 @default.
- W2912971066 cites W18593269 @default.
- W2912971066 cites W1963737364 @default.
- W2912971066 cites W1968761064 @default.
- W2912971066 cites W1976038582 @default.
- W2912971066 cites W1987610593 @default.
- W2912971066 cites W2002108805 @default.
- W2912971066 cites W2039691998 @default.
- W2912971066 cites W2041789624 @default.
- W2912971066 cites W2047452505 @default.
- W2912971066 cites W2062908157 @default.
- W2912971066 cites W2081702442 @default.
- W2912971066 cites W2086923758 @default.
- W2912971066 cites W2098321252 @default.
- W2912971066 cites W2106289521 @default.
- W2912971066 cites W2107940314 @default.
- W2912971066 cites W2110624364 @default.
- W2912971066 cites W2112382973 @default.
- W2912971066 cites W2120917538 @default.
- W2912971066 cites W2132724073 @default.
- W2912971066 cites W2137407193 @default.
- W2912971066 cites W2146089916 @default.
- W2912971066 cites W2158958709 @default.
- W2912971066 cites W2160194473 @default.
- W2912971066 cites W2168001117 @default.
- W2912971066 cites W2168041406 @default.
- W2912971066 cites W2283041611 @default.
- W2912971066 cites W2338526423 @default.
- W2912971066 cites W2345195116 @default.
- W2912971066 cites W2401585477 @default.
- W2912971066 cites W2416919433 @default.
- W2912971066 cites W2462432627 @default.
- W2912971066 cites W2463568293 @default.
- W2912971066 cites W2472717904 @default.
- W2912971066 cites W2519078114 @default.
- W2912971066 cites W2538492664 @default.
- W2912971066 cites W2577646479 @default.
- W2912971066 cites W2582438818 @default.
- W2912971066 cites W2593739814 @default.
- W2912971066 cites W2623211776 @default.
- W2912971066 cites W2664267452 @default.
- W2912971066 cites W2735200550 @default.
- W2912971066 cites W2735580341 @default.
- W2912971066 cites W2762497951 @default.
- W2912971066 cites W2765628501 @default.
- W2912971066 cites W2767344512 @default.
- W2912971066 cites W2768488789 @default.
- W2912971066 cites W2787868817 @default.
- W2912971066 cites W2793682084 @default.
- W2912971066 cites W72448761 @default.
- W2912971066 cites W87675507 @default.
- W2912971066 doi "https://doi.org/10.1093/jamia/ocy173" @default.
- W2912971066 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6657282" @default.
- W2912971066 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30726935" @default.
- W2912971066 hasPublicationYear "2019" @default.
- W2912971066 type Work @default.
- W2912971066 sameAs 2912971066 @default.
- W2912971066 citedByCount "224" @default.
- W2912971066 countsByYear W29129710662012 @default.
- W2912971066 countsByYear W29129710662019 @default.
- W2912971066 countsByYear W29129710662020 @default.
- W2912971066 countsByYear W29129710662021 @default.
- W2912971066 countsByYear W29129710662022 @default.
- W2912971066 countsByYear W29129710662023 @default.
- W2912971066 crossrefType "journal-article" @default.
- W2912971066 hasAuthorship W2912971066A5033415531 @default.
- W2912971066 hasAuthorship W2912971066A5038579832 @default.
- W2912971066 hasAuthorship W2912971066A5075833022 @default.
- W2912971066 hasAuthorship W2912971066A5085031426 @default.
- W2912971066 hasBestOaLocation W29129710662 @default.
- W2912971066 hasConcept C118552586 @default.
- W2912971066 hasConcept C136764020 @default.
- W2912971066 hasConcept C138885662 @default.
- W2912971066 hasConcept C154945302 @default.
- W2912971066 hasConcept C160735492 @default.
- W2912971066 hasConcept C162324750 @default.
- W2912971066 hasConcept C17744445 @default.
- W2912971066 hasConcept C199033989 @default.
- W2912971066 hasConcept C199360897 @default.
- W2912971066 hasConcept C199539241 @default.
- W2912971066 hasConcept C204321447 @default.
- W2912971066 hasConcept C2779473830 @default.
- W2912971066 hasConcept C2780733359 @default.
- W2912971066 hasConcept C3018949938 @default.
- W2912971066 hasConcept C41008148 @default.
- W2912971066 hasConcept C41895202 @default.
- W2912971066 hasConcept C50522688 @default.
- W2912971066 hasConcept C56666940 @default.