Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912972706> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2912972706 abstract "Solar photovoltaic (PV) installation businesses frequently encounter problems with lead generation. A commonly used approach to identify credible customers involves cold-calling contacts from a purchased database containing very limited information or information that is inaccurate, out of date, and doesn't identify whether the building already has solar PV installed. This process of contacting potential customers, therefore, is often time-consuming, cost-ineffective, and inefficient, which results in increased costs for customers to account for these limitations. The objective of the current research project is to propose a method of automating this industry problem by applying Deep Neural Networks (DNNs). A Semantic Segmentation Network (SegNet) will be utilized, with a database of satellite images and corresponding pixel label images. The SegN et will seek to identify buildings from satellite imagery, and to in turn identify whether buildings have pre-existing solar installations, using a cascaded Convolutional Neural Network (CNN). Transfer learning on the CNN will fine-tune the network to classify roofs of buildings into two categories of having solar PV installed and not having solar PV installed. The CNN will be trained and tested on separate augmented databases to improve the classification accuracy with the output of the system recording a database of buildings without solar PV installed. By automating what was previously a time-consuming manual process, the savings incurred can be passed onto customers. Results of the current project demonstrate successful segmentation of buildings and identification of pre-existing solar PV installations. Implications of results are discussed." @default.
- W2912972706 created "2019-02-21" @default.
- W2912972706 creator A5009875736 @default.
- W2912972706 creator A5055298907 @default.
- W2912972706 creator A5065207789 @default.
- W2912972706 date "2018-12-01" @default.
- W2912972706 modified "2023-09-27" @default.
- W2912972706 title "Using Deep Learning to Identify Potential Roof Spaces for Solar Panels" @default.
- W2912972706 cites W1958328135 @default.
- W2912972706 cites W2097117768 @default.
- W2912972706 cites W2103328396 @default.
- W2912972706 cites W2117539524 @default.
- W2912972706 cites W2163605009 @default.
- W2912972706 cites W2165698076 @default.
- W2912972706 cites W2183182206 @default.
- W2912972706 cites W2194775991 @default.
- W2912972706 cites W2277790332 @default.
- W2912972706 cites W2579318141 @default.
- W2912972706 cites W2593792475 @default.
- W2912972706 cites W2608157486 @default.
- W2912972706 cites W2618865185 @default.
- W2912972706 cites W2620739303 @default.
- W2912972706 cites W2622263826 @default.
- W2912972706 cites W2649341231 @default.
- W2912972706 cites W2962736495 @default.
- W2912972706 cites W2963150697 @default.
- W2912972706 cites W2963980515 @default.
- W2912972706 cites W639708223 @default.
- W2912972706 doi "https://doi.org/10.1109/icspcs.2018.8631725" @default.
- W2912972706 hasPublicationYear "2018" @default.
- W2912972706 type Work @default.
- W2912972706 sameAs 2912972706 @default.
- W2912972706 citedByCount "6" @default.
- W2912972706 countsByYear W29129727062020 @default.
- W2912972706 countsByYear W29129727062021 @default.
- W2912972706 countsByYear W29129727062023 @default.
- W2912972706 crossrefType "proceedings-article" @default.
- W2912972706 hasAuthorship W2912972706A5009875736 @default.
- W2912972706 hasAuthorship W2912972706A5055298907 @default.
- W2912972706 hasAuthorship W2912972706A5065207789 @default.
- W2912972706 hasConcept C108583219 @default.
- W2912972706 hasConcept C111919701 @default.
- W2912972706 hasConcept C116834253 @default.
- W2912972706 hasConcept C119599485 @default.
- W2912972706 hasConcept C127413603 @default.
- W2912972706 hasConcept C147176958 @default.
- W2912972706 hasConcept C154945302 @default.
- W2912972706 hasConcept C2776748203 @default.
- W2912972706 hasConcept C41008148 @default.
- W2912972706 hasConcept C41291067 @default.
- W2912972706 hasConcept C59822182 @default.
- W2912972706 hasConcept C81363708 @default.
- W2912972706 hasConcept C86803240 @default.
- W2912972706 hasConcept C89600930 @default.
- W2912972706 hasConcept C98045186 @default.
- W2912972706 hasConceptScore W2912972706C108583219 @default.
- W2912972706 hasConceptScore W2912972706C111919701 @default.
- W2912972706 hasConceptScore W2912972706C116834253 @default.
- W2912972706 hasConceptScore W2912972706C119599485 @default.
- W2912972706 hasConceptScore W2912972706C127413603 @default.
- W2912972706 hasConceptScore W2912972706C147176958 @default.
- W2912972706 hasConceptScore W2912972706C154945302 @default.
- W2912972706 hasConceptScore W2912972706C2776748203 @default.
- W2912972706 hasConceptScore W2912972706C41008148 @default.
- W2912972706 hasConceptScore W2912972706C41291067 @default.
- W2912972706 hasConceptScore W2912972706C59822182 @default.
- W2912972706 hasConceptScore W2912972706C81363708 @default.
- W2912972706 hasConceptScore W2912972706C86803240 @default.
- W2912972706 hasConceptScore W2912972706C89600930 @default.
- W2912972706 hasConceptScore W2912972706C98045186 @default.
- W2912972706 hasLocation W29129727061 @default.
- W2912972706 hasOpenAccess W2912972706 @default.
- W2912972706 hasPrimaryLocation W29129727061 @default.
- W2912972706 hasRelatedWork W2731899572 @default.
- W2912972706 hasRelatedWork W3102253946 @default.
- W2912972706 hasRelatedWork W3116150086 @default.
- W2912972706 hasRelatedWork W3133861977 @default.
- W2912972706 hasRelatedWork W3144574764 @default.
- W2912972706 hasRelatedWork W4200173597 @default.
- W2912972706 hasRelatedWork W4293211451 @default.
- W2912972706 hasRelatedWork W4308191152 @default.
- W2912972706 hasRelatedWork W4312417841 @default.
- W2912972706 hasRelatedWork W4321369474 @default.
- W2912972706 isParatext "false" @default.
- W2912972706 isRetracted "false" @default.
- W2912972706 magId "2912972706" @default.
- W2912972706 workType "article" @default.