Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912976871> ?p ?o ?g. }
Showing items 1 to 45 of
45
with 100 items per page.
- W2912976871 abstract "This thesis is concerned with a statistical model called hidden Markov model (HMM). We were led to this topic by the paper by J. Ernst and M. Kellis where they apply HMMs to the study of human genome. We give a formal definition of the HMM, give examples of such models and describe algorithms that are used, among others, the forward, the backward and the Viterbi algorithm. Furthermore, we implement and analyze methods for parameter estimation (emission and transition probabilities) for HMMs: the Baum-Welch algorithm and Viterbi training. The Baum-Welch algorithm turned out to be more effective than Viterbi training when tested on simulated examples that we present. However, the Baum.Welch algorithm does not work in practice because of the issues like the local maxima and the choice of the initial parameters. Finally, we apply information criteria AIC and BIC to study complexity of our models." @default.
- W2912976871 created "2019-02-21" @default.
- W2912976871 creator A5037314912 @default.
- W2912976871 date "2014-07-11" @default.
- W2912976871 modified "2023-09-23" @default.
- W2912976871 title "Kompleksnost skrivenih Markovljevih modela" @default.
- W2912976871 hasPublicationYear "2014" @default.
- W2912976871 type Work @default.
- W2912976871 sameAs 2912976871 @default.
- W2912976871 citedByCount "0" @default.
- W2912976871 crossrefType "dissertation" @default.
- W2912976871 hasAuthorship W2912976871A5037314912 @default.
- W2912976871 hasConcept C11413529 @default.
- W2912976871 hasConcept C119857082 @default.
- W2912976871 hasConcept C153180895 @default.
- W2912976871 hasConcept C154945302 @default.
- W2912976871 hasConcept C163836022 @default.
- W2912976871 hasConcept C196455857 @default.
- W2912976871 hasConcept C196956702 @default.
- W2912976871 hasConcept C23224414 @default.
- W2912976871 hasConcept C28490314 @default.
- W2912976871 hasConcept C41008148 @default.
- W2912976871 hasConcept C54907487 @default.
- W2912976871 hasConcept C60582962 @default.
- W2912976871 hasConcept C98763669 @default.
- W2912976871 hasConceptScore W2912976871C11413529 @default.
- W2912976871 hasConceptScore W2912976871C119857082 @default.
- W2912976871 hasConceptScore W2912976871C153180895 @default.
- W2912976871 hasConceptScore W2912976871C154945302 @default.
- W2912976871 hasConceptScore W2912976871C163836022 @default.
- W2912976871 hasConceptScore W2912976871C196455857 @default.
- W2912976871 hasConceptScore W2912976871C196956702 @default.
- W2912976871 hasConceptScore W2912976871C23224414 @default.
- W2912976871 hasConceptScore W2912976871C28490314 @default.
- W2912976871 hasConceptScore W2912976871C41008148 @default.
- W2912976871 hasConceptScore W2912976871C54907487 @default.
- W2912976871 hasConceptScore W2912976871C60582962 @default.
- W2912976871 hasConceptScore W2912976871C98763669 @default.
- W2912976871 hasLocation W29129768711 @default.
- W2912976871 hasOpenAccess W2912976871 @default.
- W2912976871 hasPrimaryLocation W29129768711 @default.
- W2912976871 isParatext "false" @default.
- W2912976871 isRetracted "false" @default.
- W2912976871 magId "2912976871" @default.
- W2912976871 workType "dissertation" @default.