Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912985636> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2912985636 endingPage "34" @default.
- W2912985636 startingPage "18" @default.
- W2912985636 abstract "Abstract This study aims to combine the modeling skills of deep learning and the domain knowledge in transportation into prediction of metro passenger flow. We present an end-to-end deep learning architecture, termed as Deep Passenger Flow (DeepPF), to forecast the metro inbound/outbound passenger flow. The architecture of the model is highly flexible and extendable; thus, enabling the integration and modeling of external environmental factors, temporal dependencies, spatial characteristics, and metro operational properties in short-term metro passenger flow prediction. Furthermore, the proposed framework achieves a high prediction accuracy due to the ease of integrating multi-source data. Numerical experiments demonstrate that the proposed DeepPF model can be extended to general conditions to fit the diverse constraints that exist in the transportation domain." @default.
- W2912985636 created "2019-02-21" @default.
- W2912985636 creator A5000140050 @default.
- W2912985636 creator A5002250184 @default.
- W2912985636 creator A5023363049 @default.
- W2912985636 date "2019-04-01" @default.
- W2912985636 modified "2023-10-16" @default.
- W2912985636 title "DeepPF: A deep learning based architecture for metro passenger flow prediction" @default.
- W2912985636 cites W1586335931 @default.
- W2912985636 cites W1973943669 @default.
- W2912985636 cites W1983857060 @default.
- W2912985636 cites W1984969638 @default.
- W2912985636 cites W2004353783 @default.
- W2912985636 cites W2023280063 @default.
- W2912985636 cites W2024558842 @default.
- W2912985636 cites W2047759776 @default.
- W2912985636 cites W2064675550 @default.
- W2912985636 cites W2066377449 @default.
- W2912985636 cites W2067909423 @default.
- W2912985636 cites W2077613353 @default.
- W2912985636 cites W2082533141 @default.
- W2912985636 cites W2085987121 @default.
- W2912985636 cites W2111072639 @default.
- W2912985636 cites W2115737340 @default.
- W2912985636 cites W2135583898 @default.
- W2912985636 cites W2145039203 @default.
- W2912985636 cites W2150152686 @default.
- W2912985636 cites W2160507653 @default.
- W2912985636 cites W2160815625 @default.
- W2912985636 cites W2165991108 @default.
- W2912985636 cites W2273232783 @default.
- W2912985636 cites W2318143237 @default.
- W2912985636 cites W2346024379 @default.
- W2912985636 cites W2529827714 @default.
- W2912985636 cites W2593182953 @default.
- W2912985636 cites W2624886053 @default.
- W2912985636 cites W2791202102 @default.
- W2912985636 cites W2793820729 @default.
- W2912985636 cites W2919115771 @default.
- W2912985636 cites W2963420343 @default.
- W2912985636 cites W4231109964 @default.
- W2912985636 doi "https://doi.org/10.1016/j.trc.2019.01.027" @default.
- W2912985636 hasPublicationYear "2019" @default.
- W2912985636 type Work @default.
- W2912985636 sameAs 2912985636 @default.
- W2912985636 citedByCount "222" @default.
- W2912985636 countsByYear W29129856362019 @default.
- W2912985636 countsByYear W29129856362020 @default.
- W2912985636 countsByYear W29129856362021 @default.
- W2912985636 countsByYear W29129856362022 @default.
- W2912985636 countsByYear W29129856362023 @default.
- W2912985636 crossrefType "journal-article" @default.
- W2912985636 hasAuthorship W2912985636A5000140050 @default.
- W2912985636 hasAuthorship W2912985636A5002250184 @default.
- W2912985636 hasAuthorship W2912985636A5023363049 @default.
- W2912985636 hasConcept C108583219 @default.
- W2912985636 hasConcept C123657996 @default.
- W2912985636 hasConcept C154945302 @default.
- W2912985636 hasConcept C166957645 @default.
- W2912985636 hasConcept C205649164 @default.
- W2912985636 hasConcept C2524010 @default.
- W2912985636 hasConcept C33923547 @default.
- W2912985636 hasConcept C38349280 @default.
- W2912985636 hasConcept C41008148 @default.
- W2912985636 hasConceptScore W2912985636C108583219 @default.
- W2912985636 hasConceptScore W2912985636C123657996 @default.
- W2912985636 hasConceptScore W2912985636C154945302 @default.
- W2912985636 hasConceptScore W2912985636C166957645 @default.
- W2912985636 hasConceptScore W2912985636C205649164 @default.
- W2912985636 hasConceptScore W2912985636C2524010 @default.
- W2912985636 hasConceptScore W2912985636C33923547 @default.
- W2912985636 hasConceptScore W2912985636C38349280 @default.
- W2912985636 hasConceptScore W2912985636C41008148 @default.
- W2912985636 hasFunder F4320321605 @default.
- W2912985636 hasLocation W29129856361 @default.
- W2912985636 hasOpenAccess W2912985636 @default.
- W2912985636 hasPrimaryLocation W29129856361 @default.
- W2912985636 hasRelatedWork W2126887587 @default.
- W2912985636 hasRelatedWork W2731899572 @default.
- W2912985636 hasRelatedWork W2939353110 @default.
- W2912985636 hasRelatedWork W2941846814 @default.
- W2912985636 hasRelatedWork W2948658236 @default.
- W2912985636 hasRelatedWork W3009238340 @default.
- W2912985636 hasRelatedWork W3118091236 @default.
- W2912985636 hasRelatedWork W3215138031 @default.
- W2912985636 hasRelatedWork W4230611425 @default.
- W2912985636 hasRelatedWork W4312962853 @default.
- W2912985636 hasVolume "101" @default.
- W2912985636 isParatext "false" @default.
- W2912985636 isRetracted "false" @default.
- W2912985636 magId "2912985636" @default.
- W2912985636 workType "article" @default.