Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912987632> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2912987632 abstract "Data envelopment analysis (DEA) cross-efficiency evaluation has been widely applied for efficiencyevaluation and ranking of decision-making units (DMUs). However, two issues still need to be addressed: nonuniquenessof optimal weights attached to the inputs and outputs and non-Pareto optimality of the evaluationresults. This thesis proposes alternative methods to address these issues. We first point out that the crossefficiencytargets for the DMUs in the traditional secondary goal models are not always feasible. We then givea model which can always provide feasible cross-efficiency targets for all the DMUs. New benevolent andaggressive secondary goal models and a neutral model are proposed. A numerical example is further used tocompare the proposed models with the previous ones. Then, we present a DEA cross-efficiency evaluationapproach based on Pareto improvement. This approach contains two models and an algorithm. The models areused to estimate whether a given set of cross-efficiency scores is Pareto optimal and to improve the crossefficiencyscores if possible, respectively. The algorithm is used to generate a set of Pareto-optimal crossefficiencyscores for the DMUs. The proposed approach is finally applied for R&D project selection andcompared with the traditional approaches. Additionally, we give a cross-bargaining game DEA cross-efficiencyevaluation approach which addresses both the issues mentioned above. A cross-bargaining game model is proposedto simulate the bargaining between each pair of DMUs among the group to identify a unique set of weights to beused in each other’s cross-efficiency calculation. An algorithm is then developed to solve this model by solvinga series of linear programs. The approach is finally illustrated by applying it to green supplier selection. Finally,we propose a DEA cross-efficiency evaluation approach based on satisfaction degree. We first introduce theconcept of satisfaction degree of each DMU on the optimal weights selected by the other DMUs. Then, a maxminmodel is given to select the set of optimal weights for each DMU which maximizes all the DMUs’satisfaction degrees. Two algorithms are given to solve the model and to ensure the uniqueness of each DMU’soptimal weights, respectively. Finally, the proposed approach is used for a case study for technology selection." @default.
- W2912987632 created "2019-02-21" @default.
- W2912987632 creator A5043703266 @default.
- W2912987632 date "2018-12-21" @default.
- W2912987632 modified "2023-09-23" @default.
- W2912987632 title "Improvement methods for data envelopment analysis (DEA) cross-efficiency evaluation" @default.
- W2912987632 hasPublicationYear "2018" @default.
- W2912987632 type Work @default.
- W2912987632 sameAs 2912987632 @default.
- W2912987632 citedByCount "0" @default.
- W2912987632 crossrefType "dissertation" @default.
- W2912987632 hasAuthorship W2912987632A5043703266 @default.
- W2912987632 hasConcept C126255220 @default.
- W2912987632 hasConcept C137635306 @default.
- W2912987632 hasConcept C154945302 @default.
- W2912987632 hasConcept C177264268 @default.
- W2912987632 hasConcept C189430467 @default.
- W2912987632 hasConcept C199360897 @default.
- W2912987632 hasConcept C22088475 @default.
- W2912987632 hasConcept C2524010 @default.
- W2912987632 hasConcept C28719098 @default.
- W2912987632 hasConcept C2986314615 @default.
- W2912987632 hasConcept C33923547 @default.
- W2912987632 hasConcept C41008148 @default.
- W2912987632 hasConcept C68781425 @default.
- W2912987632 hasConcept C81917197 @default.
- W2912987632 hasConceptScore W2912987632C126255220 @default.
- W2912987632 hasConceptScore W2912987632C137635306 @default.
- W2912987632 hasConceptScore W2912987632C154945302 @default.
- W2912987632 hasConceptScore W2912987632C177264268 @default.
- W2912987632 hasConceptScore W2912987632C189430467 @default.
- W2912987632 hasConceptScore W2912987632C199360897 @default.
- W2912987632 hasConceptScore W2912987632C22088475 @default.
- W2912987632 hasConceptScore W2912987632C2524010 @default.
- W2912987632 hasConceptScore W2912987632C28719098 @default.
- W2912987632 hasConceptScore W2912987632C2986314615 @default.
- W2912987632 hasConceptScore W2912987632C33923547 @default.
- W2912987632 hasConceptScore W2912987632C41008148 @default.
- W2912987632 hasConceptScore W2912987632C68781425 @default.
- W2912987632 hasConceptScore W2912987632C81917197 @default.
- W2912987632 hasLocation W29129876321 @default.
- W2912987632 hasOpenAccess W2912987632 @default.
- W2912987632 hasPrimaryLocation W29129876321 @default.
- W2912987632 hasRelatedWork W1011530788 @default.
- W2912987632 hasRelatedWork W1676259686 @default.
- W2912987632 hasRelatedWork W2003625720 @default.
- W2912987632 hasRelatedWork W2061731337 @default.
- W2912987632 hasRelatedWork W2093138702 @default.
- W2912987632 hasRelatedWork W2093165291 @default.
- W2912987632 hasRelatedWork W2118458769 @default.
- W2912987632 hasRelatedWork W2280772847 @default.
- W2912987632 hasRelatedWork W2340969443 @default.
- W2912987632 hasRelatedWork W2342247310 @default.
- W2912987632 hasRelatedWork W2349317584 @default.
- W2912987632 hasRelatedWork W2497304787 @default.
- W2912987632 hasRelatedWork W2561019521 @default.
- W2912987632 hasRelatedWork W2796305573 @default.
- W2912987632 hasRelatedWork W2796558506 @default.
- W2912987632 hasRelatedWork W2892018392 @default.
- W2912987632 hasRelatedWork W2921711103 @default.
- W2912987632 hasRelatedWork W2994983731 @default.
- W2912987632 hasRelatedWork W2995229689 @default.
- W2912987632 hasRelatedWork W3094557460 @default.
- W2912987632 isParatext "false" @default.
- W2912987632 isRetracted "false" @default.
- W2912987632 magId "2912987632" @default.
- W2912987632 workType "dissertation" @default.