Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912991430> ?p ?o ?g. }
- W2912991430 endingPage "413" @default.
- W2912991430 startingPage "403" @default.
- W2912991430 abstract "Can full spermatogenesis be achieved after xenotransplantation of prepubertal primate testis tissue to the mouse, in testis or subcutaneously? Intratesticular xenotransplantation supported the differentiation of immature germ cells from marmoset (Callithrix jacchus) into spermatids and spermatozoa at 4 and 9 months post-transplantation, while in subcutaneous transplants, spermatogenic arrest was observed at 4 months and none of the transplants survived at 9 months. Auto-transplantation of cryopreserved immature testis tissue (ITT) could be a potential fertility restoration strategy for patients with complete loss of germ cells due to chemo- and/or radiotherapy at a young age. Before ITT transplantation can be used for clinical application, it is a prerequisite to demonstrate the feasibility of the technique and identify the conditions required for establishing spermatogenesis in primate ITT transplants. Although xenotransplantation of ITT from several species has resulted in complete spermatogenesis, in human and marmoset, ITT has not been successful. In this study, we used marmoset as a pre-clinical animal model. ITT was obtained from two 6-month-old co-twin marmosets. A total of 147 testis tissue pieces (~0.8–1.0 mm3 each) were transplanted into the testicular parenchyma (intratesticular; n = 40) or under the dorsal skin (ectopic; n = 107) of 4-week-old immunodeficient Swiss Nu/Nu mice (n = 20). Each mouse received one single marmoset testis tissue piece in each testis and 4–6 pieces subcutaneously. Xenotransplants were retrieved at 4 and 9 months post-transplantation and evaluations were performed with regards to transplant survival, spermatogonial quantity and germ cell differentiation. Transplant survival was histologically evaluated by haematoxylin-periodic acid Schiff (H/PAS) staining. Spermatogonia were identified by MAGE-A4 via immunohistochemistry. Germ cell differentiation was assessed by morphological identification of different germ cell types on H/PAS stained sections. Meiotically active germ cells were identified by BOLL expression. CREM immunohistochemistry was performed to confirm the presence of post-meiotic germ cells and ACROSIN was used to determine the presence of round, elongating and elongated spermatids. Four months post-transplantation, 50% of the intratesticular transplants and 21% of the ectopic transplants were recovered (P = 0.019). The number of spermatogonia per tubule did not show any variation. In 33% of the recovered intratesticular transplants, complete spermatogenesis was established. Overall, 78% of the intratesticular transplants showed post-meiotic differentiation (round spermatids, elongating/elongated spermatids and spermatozoa). However, during the same period, spermatocytes (early meiotic germ cells) were the most advanced germ cell type present in the ectopic transplants. Nine months post-transplantation, 50% of the intratesticular transplants survived, whilst none of the ectopic transplants was recovered (P < 0.0001). Transplants contained more spermatogonia per tubule (P = 0.018) than at 4 months. Complete spermatogenesis was observed in all recovered transplants (100%), indicating a progressive spermatogenic development in intratesticular transplants between the two time-points. Nine months post-transplantation, transplants contained more seminiferous tubules with post-meiotic germ cells (37 vs. 5%; P < 0.001) and fewer tubules without germ cells (2 vs. 8%; P = 0.014) compared to 4 months post-transplantation. N/A. Although xenotransplantation of marmoset ITT was successful, it does not fully reflect all aspects of a future clinical setting. Furthermore, due to ethical restrictions, we were not able to prove the functionality of the spermatozoa produced in the marmoset transplants. In this pre-clinical study, we demonstrated that testicular parenchyma provides the required microenvironment for germ cell differentiation and long-term survival of immature marmoset testis tissue, likely due to the favourable temperature regulation, growth factors and hormonal support. These results encourage the design of new experiments on human ITT xenotransplantation and show that intratesticular transplantation is likely to be superior to ectopic transplantation for fertility restoration following gonadotoxic treatment in childhood. This project was funded by the ITN Marie Curie Programme ‘Growsperm’ (EU-FP7-PEOPLE-2013-ITN 603568) and the scientific Fund Willy Gepts from the UZ Brussel (ADSI677). D.V.S. is a post-doctoral fellow of the Fonds Wetenschappelijk Onderzoek (FWO; 12M2815N). No conflict of interest is declared." @default.
- W2912991430 created "2019-02-21" @default.
- W2912991430 creator A5006152198 @default.
- W2912991430 creator A5007548763 @default.
- W2912991430 creator A5027732387 @default.
- W2912991430 creator A5040619244 @default.
- W2912991430 creator A5043875401 @default.
- W2912991430 creator A5056011321 @default.
- W2912991430 creator A5058030833 @default.
- W2912991430 date "2019-02-12" @default.
- W2912991430 modified "2023-09-26" @default.
- W2912991430 title "Complete spermatogenesis in intratesticular testis tissue xenotransplants from immature non-human primate" @default.
- W2912991430 cites W1927672794 @default.
- W2912991430 cites W1968659768 @default.
- W2912991430 cites W1974916331 @default.
- W2912991430 cites W1977198369 @default.
- W2912991430 cites W1979136847 @default.
- W2912991430 cites W1981960535 @default.
- W2912991430 cites W1996306577 @default.
- W2912991430 cites W2038381398 @default.
- W2912991430 cites W2047463927 @default.
- W2912991430 cites W2057721938 @default.
- W2912991430 cites W2062396984 @default.
- W2912991430 cites W2076005508 @default.
- W2912991430 cites W2076282244 @default.
- W2912991430 cites W2081023675 @default.
- W2912991430 cites W2081654680 @default.
- W2912991430 cites W2088712320 @default.
- W2912991430 cites W2097394783 @default.
- W2912991430 cites W2102210629 @default.
- W2912991430 cites W2103853372 @default.
- W2912991430 cites W2112034866 @default.
- W2912991430 cites W2112285984 @default.
- W2912991430 cites W2113046785 @default.
- W2912991430 cites W2117240636 @default.
- W2912991430 cites W2118289533 @default.
- W2912991430 cites W2135321233 @default.
- W2912991430 cites W2135615655 @default.
- W2912991430 cites W2136968632 @default.
- W2912991430 cites W2148615479 @default.
- W2912991430 cites W2150060351 @default.
- W2912991430 cites W2152450048 @default.
- W2912991430 cites W2164457293 @default.
- W2912991430 cites W2168027674 @default.
- W2912991430 cites W2171915275 @default.
- W2912991430 cites W2189905177 @default.
- W2912991430 cites W2219572828 @default.
- W2912991430 cites W2331642602 @default.
- W2912991430 cites W2372468500 @default.
- W2912991430 cites W2583890098 @default.
- W2912991430 doi "https://doi.org/10.1093/humrep/dey373" @default.
- W2912991430 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6389866" @default.
- W2912991430 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30753464" @default.
- W2912991430 hasPublicationYear "2019" @default.
- W2912991430 type Work @default.
- W2912991430 sameAs 2912991430 @default.
- W2912991430 citedByCount "39" @default.
- W2912991430 countsByYear W29129914302019 @default.
- W2912991430 countsByYear W29129914302020 @default.
- W2912991430 countsByYear W29129914302021 @default.
- W2912991430 countsByYear W29129914302022 @default.
- W2912991430 countsByYear W29129914302023 @default.
- W2912991430 crossrefType "journal-article" @default.
- W2912991430 hasAuthorship W2912991430A5006152198 @default.
- W2912991430 hasAuthorship W2912991430A5007548763 @default.
- W2912991430 hasAuthorship W2912991430A5027732387 @default.
- W2912991430 hasAuthorship W2912991430A5040619244 @default.
- W2912991430 hasAuthorship W2912991430A5043875401 @default.
- W2912991430 hasAuthorship W2912991430A5056011321 @default.
- W2912991430 hasAuthorship W2912991430A5058030833 @default.
- W2912991430 hasBestOaLocation W29129914301 @default.
- W2912991430 hasConcept C105702510 @default.
- W2912991430 hasConcept C123765429 @default.
- W2912991430 hasConcept C126322002 @default.
- W2912991430 hasConcept C134018914 @default.
- W2912991430 hasConcept C151730666 @default.
- W2912991430 hasConcept C16685009 @default.
- W2912991430 hasConcept C2776453536 @default.
- W2912991430 hasConcept C2778442404 @default.
- W2912991430 hasConcept C2779066085 @default.
- W2912991430 hasConcept C2779504336 @default.
- W2912991430 hasConcept C2911091166 @default.
- W2912991430 hasConcept C71924100 @default.
- W2912991430 hasConcept C86803240 @default.
- W2912991430 hasConceptScore W2912991430C105702510 @default.
- W2912991430 hasConceptScore W2912991430C123765429 @default.
- W2912991430 hasConceptScore W2912991430C126322002 @default.
- W2912991430 hasConceptScore W2912991430C134018914 @default.
- W2912991430 hasConceptScore W2912991430C151730666 @default.
- W2912991430 hasConceptScore W2912991430C16685009 @default.
- W2912991430 hasConceptScore W2912991430C2776453536 @default.
- W2912991430 hasConceptScore W2912991430C2778442404 @default.
- W2912991430 hasConceptScore W2912991430C2779066085 @default.
- W2912991430 hasConceptScore W2912991430C2779504336 @default.
- W2912991430 hasConceptScore W2912991430C2911091166 @default.
- W2912991430 hasConceptScore W2912991430C71924100 @default.
- W2912991430 hasConceptScore W2912991430C86803240 @default.
- W2912991430 hasFunder F4320321730 @default.