Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912996616> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2912996616 abstract "Convolutional neural networks are state-of-the-art for various segmentation tasks. While for 2D images these networks are also computationally efficient, 3D convolutions have huge storage requirements and require long training time. To overcome this issue, we introduce a network structure for volumetric data without 3D convolutional layers. The main idea is to include maximum intensity projections from different directions to transform the volumetric data to a sequence of images, where each image contains information of the full data. We then apply 2D convolutions to these projection images and lift them again to volumetric data using a trainable reconstruction algorithm.The proposed network architecture has less storage requirements than network structures using 3D convolutions. For a tested binary segmentation task, it even shows better performance than the 3D U-net and can be trained much faster." @default.
- W2912996616 created "2019-02-21" @default.
- W2912996616 creator A5001210223 @default.
- W2912996616 creator A5024354228 @default.
- W2912996616 creator A5026767648 @default.
- W2912996616 creator A5065509218 @default.
- W2912996616 creator A5089098647 @default.
- W2912996616 date "2019-02-01" @default.
- W2912996616 modified "2023-09-27" @default.
- W2912996616 title "Projection-Based 2.5D U-net Architecture for Fast Volumetric Segmentation" @default.
- W2912996616 cites W1901129140 @default.
- W2912996616 cites W2949117887 @default.
- W2912996616 cites W2949650786 @default.
- W2912996616 hasPublicationYear "2019" @default.
- W2912996616 type Work @default.
- W2912996616 sameAs 2912996616 @default.
- W2912996616 citedByCount "3" @default.
- W2912996616 countsByYear W29129966162019 @default.
- W2912996616 countsByYear W29129966162020 @default.
- W2912996616 countsByYear W29129966162021 @default.
- W2912996616 crossrefType "proceedings-article" @default.
- W2912996616 hasAuthorship W2912996616A5001210223 @default.
- W2912996616 hasAuthorship W2912996616A5024354228 @default.
- W2912996616 hasAuthorship W2912996616A5026767648 @default.
- W2912996616 hasAuthorship W2912996616A5065509218 @default.
- W2912996616 hasAuthorship W2912996616A5089098647 @default.
- W2912996616 hasConcept C11413529 @default.
- W2912996616 hasConcept C124101348 @default.
- W2912996616 hasConcept C124504099 @default.
- W2912996616 hasConcept C139002025 @default.
- W2912996616 hasConcept C153180895 @default.
- W2912996616 hasConcept C154945302 @default.
- W2912996616 hasConcept C193415008 @default.
- W2912996616 hasConcept C31972630 @default.
- W2912996616 hasConcept C33923547 @default.
- W2912996616 hasConcept C38652104 @default.
- W2912996616 hasConcept C41008148 @default.
- W2912996616 hasConcept C48372109 @default.
- W2912996616 hasConcept C57493831 @default.
- W2912996616 hasConcept C81363708 @default.
- W2912996616 hasConcept C89600930 @default.
- W2912996616 hasConcept C94375191 @default.
- W2912996616 hasConceptScore W2912996616C11413529 @default.
- W2912996616 hasConceptScore W2912996616C124101348 @default.
- W2912996616 hasConceptScore W2912996616C124504099 @default.
- W2912996616 hasConceptScore W2912996616C139002025 @default.
- W2912996616 hasConceptScore W2912996616C153180895 @default.
- W2912996616 hasConceptScore W2912996616C154945302 @default.
- W2912996616 hasConceptScore W2912996616C193415008 @default.
- W2912996616 hasConceptScore W2912996616C31972630 @default.
- W2912996616 hasConceptScore W2912996616C33923547 @default.
- W2912996616 hasConceptScore W2912996616C38652104 @default.
- W2912996616 hasConceptScore W2912996616C41008148 @default.
- W2912996616 hasConceptScore W2912996616C48372109 @default.
- W2912996616 hasConceptScore W2912996616C57493831 @default.
- W2912996616 hasConceptScore W2912996616C81363708 @default.
- W2912996616 hasConceptScore W2912996616C89600930 @default.
- W2912996616 hasConceptScore W2912996616C94375191 @default.
- W2912996616 hasLocation W29129966161 @default.
- W2912996616 hasOpenAccess W2912996616 @default.
- W2912996616 hasPrimaryLocation W29129966161 @default.
- W2912996616 hasRelatedWork W1901129140 @default.
- W2912996616 hasRelatedWork W2304751970 @default.
- W2912996616 hasRelatedWork W2905478298 @default.
- W2912996616 hasRelatedWork W2945122711 @default.
- W2912996616 hasRelatedWork W2949394278 @default.
- W2912996616 hasRelatedWork W2951978378 @default.
- W2912996616 hasRelatedWork W2963231572 @default.
- W2912996616 hasRelatedWork W2965293215 @default.
- W2912996616 hasRelatedWork W2971252756 @default.
- W2912996616 hasRelatedWork W3011905793 @default.
- W2912996616 hasRelatedWork W3034482224 @default.
- W2912996616 hasRelatedWork W3048074310 @default.
- W2912996616 hasRelatedWork W3083537085 @default.
- W2912996616 hasRelatedWork W3090258443 @default.
- W2912996616 hasRelatedWork W3105115875 @default.
- W2912996616 hasRelatedWork W3120248555 @default.
- W2912996616 hasRelatedWork W3124912448 @default.
- W2912996616 hasRelatedWork W3147875291 @default.
- W2912996616 hasRelatedWork W3174280965 @default.
- W2912996616 hasRelatedWork W3180799285 @default.
- W2912996616 isParatext "false" @default.
- W2912996616 isRetracted "false" @default.
- W2912996616 magId "2912996616" @default.
- W2912996616 workType "article" @default.