Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913005526> ?p ?o ?g. }
- W2913005526 endingPage "47" @default.
- W2913005526 startingPage "39" @default.
- W2913005526 abstract "N6-methyladenosine (m6A) is the one of the most important RNA modifications, playing the role of splicing events, mRNA exporting and stability to cell differentiation. Because of wide distribution of m6A in genes, identification of m6A sites in RNA sequences has significant importance for basic biomedical research and drug development. High-throughput laboratory methods are time consuming and costly. Nowadays, effective computational methods are much desirable because of its convenience and fast speed. Thus, in this article, we proposed a new method to improve the performance of the m6A prediction by using the combined features of deep features and original features with extreme gradient boosting optimized by particle swarm optimization (PXGB). The proposed PXGB algorithm uses three kinds of features, i.e., position-specific nucleotide propensity (PSNP), position-specific dinucleotide propensity (PSDP), and the traditional nucleotide composition (NC). By 10-fold cross validation, the performance of PXGB was measured with an AUC of 0.8390 and an MCC of 0.5234. Additionally, PXGB was compared with the existing methods, and the higher MCC and AUC of PXGB demonstrated that PXGB was effective to predict m6A sites. The predictor proposed in this study might help to predict more m6A sites and guide related experimental validation." @default.
- W2913005526 created "2019-02-21" @default.
- W2913005526 creator A5010262106 @default.
- W2913005526 creator A5023555343 @default.
- W2913005526 creator A5048969140 @default.
- W2913005526 creator A5051300846 @default.
- W2913005526 creator A5082117229 @default.
- W2913005526 creator A5086048470 @default.
- W2913005526 date "2019-04-01" @default.
- W2913005526 modified "2023-10-16" @default.
- W2913005526 title "Identifying N6-methyladenosine sites using extreme gradient boosting system optimized by particle swarm optimizer" @default.
- W2913005526 cites W1186776093 @default.
- W2913005526 cites W1986988560 @default.
- W2913005526 cites W1998402534 @default.
- W2913005526 cites W2005432976 @default.
- W2913005526 cites W2005568256 @default.
- W2913005526 cites W2018559830 @default.
- W2913005526 cites W2034070267 @default.
- W2913005526 cites W2041328373 @default.
- W2913005526 cites W2053765706 @default.
- W2913005526 cites W2062821957 @default.
- W2913005526 cites W2080915318 @default.
- W2913005526 cites W2108497461 @default.
- W2913005526 cites W2114024619 @default.
- W2913005526 cites W2120026469 @default.
- W2913005526 cites W2121464890 @default.
- W2913005526 cites W2122111042 @default.
- W2913005526 cites W2122555405 @default.
- W2913005526 cites W2155060633 @default.
- W2913005526 cites W2167666169 @default.
- W2913005526 cites W2172162168 @default.
- W2913005526 cites W2205505631 @default.
- W2913005526 cites W2209329607 @default.
- W2913005526 cites W2278741011 @default.
- W2913005526 cites W2285433275 @default.
- W2913005526 cites W2307699953 @default.
- W2913005526 cites W2313411748 @default.
- W2913005526 cites W2345938495 @default.
- W2913005526 cites W2415310056 @default.
- W2913005526 cites W2420474086 @default.
- W2913005526 cites W2439245561 @default.
- W2913005526 cites W2461096072 @default.
- W2913005526 cites W2471518332 @default.
- W2913005526 cites W2472513547 @default.
- W2913005526 cites W2514430732 @default.
- W2913005526 cites W2559209493 @default.
- W2913005526 cites W2599457435 @default.
- W2913005526 cites W2605763657 @default.
- W2913005526 cites W2607378088 @default.
- W2913005526 cites W2609394459 @default.
- W2913005526 cites W2609814551 @default.
- W2913005526 cites W2610313513 @default.
- W2913005526 cites W2642879556 @default.
- W2913005526 cites W2735158968 @default.
- W2913005526 cites W2735428840 @default.
- W2913005526 cites W2736742854 @default.
- W2913005526 cites W2748860630 @default.
- W2913005526 cites W2749697459 @default.
- W2913005526 cites W2754289562 @default.
- W2913005526 cites W2762890495 @default.
- W2913005526 cites W2767196078 @default.
- W2913005526 cites W2768705872 @default.
- W2913005526 cites W2775666559 @default.
- W2913005526 cites W2794797435 @default.
- W2913005526 cites W2800074215 @default.
- W2913005526 cites W2800245053 @default.
- W2913005526 cites W2803011470 @default.
- W2913005526 cites W2804489036 @default.
- W2913005526 cites W2804672687 @default.
- W2913005526 cites W2805791355 @default.
- W2913005526 cites W2808950870 @default.
- W2913005526 cites W2875515511 @default.
- W2913005526 cites W2884524796 @default.
- W2913005526 cites W2890517686 @default.
- W2913005526 cites W2896188973 @default.
- W2913005526 cites W2896821612 @default.
- W2913005526 cites W2897596315 @default.
- W2913005526 cites W3102476541 @default.
- W2913005526 cites W4239510810 @default.
- W2913005526 doi "https://doi.org/10.1016/j.jtbi.2019.01.035" @default.
- W2913005526 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30711452" @default.
- W2913005526 hasPublicationYear "2019" @default.
- W2913005526 type Work @default.
- W2913005526 sameAs 2913005526 @default.
- W2913005526 citedByCount "20" @default.
- W2913005526 countsByYear W29130055262020 @default.
- W2913005526 countsByYear W29130055262021 @default.
- W2913005526 countsByYear W29130055262022 @default.
- W2913005526 countsByYear W29130055262023 @default.
- W2913005526 crossrefType "journal-article" @default.
- W2913005526 hasAuthorship W2913005526A5010262106 @default.
- W2913005526 hasAuthorship W2913005526A5023555343 @default.
- W2913005526 hasAuthorship W2913005526A5048969140 @default.
- W2913005526 hasAuthorship W2913005526A5051300846 @default.
- W2913005526 hasAuthorship W2913005526A5082117229 @default.
- W2913005526 hasAuthorship W2913005526A5086048470 @default.
- W2913005526 hasConcept C104317684 @default.
- W2913005526 hasConcept C119857082 @default.