Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913016613> ?p ?o ?g. }
- W2913016613 endingPage "e0211013" @default.
- W2913016613 startingPage "e0211013" @default.
- W2913016613 abstract "A recurrent criticism concerning the use of online social media data in political science research is the lack of demographic information about social media users. By employing a face-recognition algorithm to the profile pictures of Facebook users, the paper derives two fundamental demographic characteristics (age and gender) of a sample of Facebook users who interacted with the most relevant British parties in the two weeks before the Brexit referendum of 23 June 2016. The article achieves the goals of (i) testing the precision of the algorithm, (ii) testing its validity, (iii) inferring new evidence on digital mobilisation, and (iv) tracing the path for future developments and application of the algorithm. The findings show that the algorithm is reliable and that it can be fruitfully used in political and social sciences both to confirm the validity of survey data and to obtain information from populations that are generally unavailable within traditional surveys." @default.
- W2913016613 created "2019-02-21" @default.
- W2913016613 creator A5023019752 @default.
- W2913016613 creator A5054814270 @default.
- W2913016613 date "2019-01-25" @default.
- W2913016613 modified "2023-10-18" @default.
- W2913016613 title "Using deep-learning algorithms to derive basic characteristics of social media users: The Brexit campaign as a case study" @default.
- W2913016613 cites W1083411388 @default.
- W2913016613 cites W1895577753 @default.
- W2913016613 cites W1905153633 @default.
- W2913016613 cites W1964218847 @default.
- W2913016613 cites W1981229576 @default.
- W2913016613 cites W1997473111 @default.
- W2913016613 cites W2019287449 @default.
- W2913016613 cites W2019507850 @default.
- W2913016613 cites W2033198212 @default.
- W2913016613 cites W2035738554 @default.
- W2913016613 cites W2037683020 @default.
- W2913016613 cites W2041312685 @default.
- W2913016613 cites W2059205332 @default.
- W2913016613 cites W2063261763 @default.
- W2913016613 cites W2066941820 @default.
- W2913016613 cites W2076007122 @default.
- W2913016613 cites W2091379279 @default.
- W2913016613 cites W2097796054 @default.
- W2913016613 cites W2106234359 @default.
- W2913016613 cites W2111900853 @default.
- W2913016613 cites W2118020653 @default.
- W2913016613 cites W2119595472 @default.
- W2913016613 cites W2125723590 @default.
- W2913016613 cites W2134525107 @default.
- W2913016613 cites W2136854688 @default.
- W2913016613 cites W2144236413 @default.
- W2913016613 cites W2151570541 @default.
- W2913016613 cites W2152428018 @default.
- W2913016613 cites W2161834943 @default.
- W2913016613 cites W2163504599 @default.
- W2913016613 cites W2167102709 @default.
- W2913016613 cites W2170890002 @default.
- W2913016613 cites W2239239723 @default.
- W2913016613 cites W2402306655 @default.
- W2913016613 cites W2440214111 @default.
- W2913016613 cites W2512028802 @default.
- W2913016613 cites W2517932935 @default.
- W2913016613 cites W2529390807 @default.
- W2913016613 cites W2534612379 @default.
- W2913016613 cites W2540795244 @default.
- W2913016613 cites W2593259672 @default.
- W2913016613 cites W2748140016 @default.
- W2913016613 cites W2810463027 @default.
- W2913016613 cites W282010338 @default.
- W2913016613 cites W3123247699 @default.
- W2913016613 cites W3123712780 @default.
- W2913016613 cites W3125175820 @default.
- W2913016613 doi "https://doi.org/10.1371/journal.pone.0211013" @default.
- W2913016613 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6347201" @default.
- W2913016613 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30682111" @default.
- W2913016613 hasPublicationYear "2019" @default.
- W2913016613 type Work @default.
- W2913016613 sameAs 2913016613 @default.
- W2913016613 citedByCount "8" @default.
- W2913016613 countsByYear W29130166132019 @default.
- W2913016613 countsByYear W29130166132020 @default.
- W2913016613 countsByYear W29130166132021 @default.
- W2913016613 countsByYear W29130166132022 @default.
- W2913016613 crossrefType "journal-article" @default.
- W2913016613 hasAuthorship W2913016613A5023019752 @default.
- W2913016613 hasAuthorship W2913016613A5054814270 @default.
- W2913016613 hasBestOaLocation W29130166131 @default.
- W2913016613 hasConcept C105639569 @default.
- W2913016613 hasConcept C11413529 @default.
- W2913016613 hasConcept C136764020 @default.
- W2913016613 hasConcept C144133560 @default.
- W2913016613 hasConcept C17744445 @default.
- W2913016613 hasConcept C199539241 @default.
- W2913016613 hasConcept C2522767166 @default.
- W2913016613 hasConcept C2776469822 @default.
- W2913016613 hasConcept C2781462389 @default.
- W2913016613 hasConcept C2910001868 @default.
- W2913016613 hasConcept C41008148 @default.
- W2913016613 hasConcept C518677369 @default.
- W2913016613 hasConcept C7991579 @default.
- W2913016613 hasConcept C94625758 @default.
- W2913016613 hasConceptScore W2913016613C105639569 @default.
- W2913016613 hasConceptScore W2913016613C11413529 @default.
- W2913016613 hasConceptScore W2913016613C136764020 @default.
- W2913016613 hasConceptScore W2913016613C144133560 @default.
- W2913016613 hasConceptScore W2913016613C17744445 @default.
- W2913016613 hasConceptScore W2913016613C199539241 @default.
- W2913016613 hasConceptScore W2913016613C2522767166 @default.
- W2913016613 hasConceptScore W2913016613C2776469822 @default.
- W2913016613 hasConceptScore W2913016613C2781462389 @default.
- W2913016613 hasConceptScore W2913016613C2910001868 @default.
- W2913016613 hasConceptScore W2913016613C41008148 @default.
- W2913016613 hasConceptScore W2913016613C518677369 @default.
- W2913016613 hasConceptScore W2913016613C7991579 @default.
- W2913016613 hasConceptScore W2913016613C94625758 @default.
- W2913016613 hasIssue "1" @default.